日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
在△ABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于D,BE⊥MN于E.
(1)當直線MN繞點C旋轉到圖1的位置時,求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當直線MN繞點C旋轉到圖2的位置時,求證:DE=AD-BE;
(3)當直線MN繞點C旋轉到圖3的位置時,試問DE、AD、BE具有怎樣的等量關系?請寫出這個等量關系,并加以證明.

【答案】分析:(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,則∠ADC=∠CEB=90°,根據等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.
(2)根據等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.
(3)DE、AD、BE具有的等量關系為:DE=BE-AD.證明的方法與(2)相同.
解答:(1)證明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在△ADC和△CEB中,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;

(2)證明:在△ADC和△CEB中,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=CE-CD=AD-BE;

(3)DE=BE-AD.
易證得△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=CD-CE=BE-AD.
點評:本題考查了旋轉的性質:旋轉前后兩圖形全等,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線段所夾的角等于旋轉角.也考查了直角三角形全等的判定與性質.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,AC=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在△ABC中,AC與⊙O相切于點A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求圖中陰影部分的面積(結果用π表示).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•松江區二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA為半徑的⊙C與AB、BC分別交于點D、E,聯結AE,DE.
(1)求BC的長;
(2)求△AED的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久精品一区 | 亚洲精品在线观看视频 | 在线免费观看毛片 | 精品国产欧美 | 夜间福利视频 | 日韩精品网 | 亚洲第一毛片 | 精品视频免费观看 | 又黄又爽又色视频 | 日本天天操 | 爱福利视频网 | 日韩在线中文 | 欧美日韩中文字幕在线 | 亚洲小视频在线观看 | 伊人久久在线 | 久久久三级 | 黄色大片在线 | 日本特黄特色aaa大片免费 | 黄色一级生活片 | 97中文字幕 | 国产一级生活片 | 黄网免费 | 黑人巨大精品欧美一区二区 | 影音先锋在线观看视频 | 999毛片| 五月婷婷影院 | 国产一区二区三区在线 | 国产成人三级一区二区在线观看一 | 91成人在线| 在线播放a| 五月婷婷开心 | 不卡av在线 | 国产精品一区在线观看 | 四虎4hu永久免费网站影院 | 久久精品毛片 | www男人天堂 | 美日韩一区 | 五月亚洲 | 一道本av| 日韩黄色影院 | 亚洲精品中文字幕乱码三区91 |