【題目】已知,如圖,BD為⊙O的直徑,點A、C在⊙O上并位于BD的兩側,∠ABC=45°,連結CD、OA并延長交于點F,過點C作⊙O的切線交BD延長線于點E.
(1)求證:∠F=∠ECF;
(2)當DF=6,tan∠EBC=,求AF的值.
【答案】(1)詳見解析;(2).
【解析】
(1)連結OC,根據切線的性質得到OC⊥CE,根據圓周角定理得到∠AOC=90°,計算即可證明;
(2)DC=x,根據正切的定義用x表示出BC、BD、OC,根據正切的定義列式計算即可.
(1)證明:連結OC,
∵CE切圓O于C,
∴OC⊥CE,
∴∠OCF+∠FCE=90°,
∵∠ABC=45°,
∴∠AOC=2∠ABC=90°,
∴∠F+∠OCF=90°,
∴∠F=∠ECF;
(2)設DC=x,
∵OB=OC,
∴∠OBC=∠OCB,
∵BD為圓O的直徑
∴∠BCO+∠OCD=90°,
∵∠ECD+∠OCD=90°,
∴∠OBC=∠ECD,
∵∠F=∠ECD,
∴∠F=∠EBC,
在Rt△BCD中,tan∠EBC=,
則BC=2DC=2x,BD=x,
∴OC=OA=x,
在Rt△FOC中,tanF=tan∠EBC=
∴FC=OC,即6+x=
x,
解得,x=4,
∴OF=2OC=4,
∴AF=OF﹣AO=2.
科目:初中數學 來源: 題型:
【題目】某校開展“陽光體育”活動,決定開設乒乓球、籃球、跑步、跳繩這四種運動項目,學生只能選擇其中一種,為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調查,并將調查結果繪制成兩張不完整的統計圖,請你結合圖中的信息解答下列問題:
(1)樣本中喜歡籃球項目的人數百分比是 ;其所在扇形統計圖中的圓心角的度數是 ;
(2)把條形統計圖補畫完整并注明人數;
(3)已知該校有1000名學生,根據樣本估計全校喜歡乒乓球的人數是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,我們把橫、縱坐標都是整數的點叫做整點.已知點A(0,4),點B是x軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數為m.當點B的橫坐標為4時,m的值是_____.當點B的橫坐標為4n(n為正整數)時,m=_____(用含n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,合肥市某中學利用周末時間開展了“助老助殘、社區服務、生態環保、網絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數據后,繪制以下不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:
(1)請把折線統計圖補充完整;
(2)求扇形統計圖中,網絡文明部分對應的圓心角的度數;
(3)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中國魏晉時期的數學家劉徽首創“割圓術”,奠定了中國圓周率計算在世界上的領先地位.劉徽提出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”,由此求得圓周率的近似值.如圖,設半徑為
的圓內接正
邊形的周長為
,圓的直徑為
,當
時,
,則當
時,
______.(結果精確到0.01,參考數據:
,
)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】今年某水果加工公司分兩次采購了一批桃子,第一次費用為25萬元,第二次費用為30萬元.已知第一次采購時每噸桃子的價格比去年的平均價格上漲了0.1萬元,第二次采購時每噸桃子的價格比去年的平均價格下降了0.1萬元,第二次采購的數量是第一次采購數量的2倍.
(1)試問去年每噸桃子的平均價格是多少萬元?兩次采購的總數量是多少噸?
(2)該公司可將桃子加工成桃脯或桃汁,每天只能加工其中一種.若單獨加工成桃脯,每天可加工3噸桃子,每噸可獲利0.7萬元;若單獨加工成桃汁,每天可加工9噸桃子,每噸可獲利0.2萬元.為出口需要,所有采購的桃子必須在30天內加工完畢.
①根據該公司的生產能力,加工桃脯的時間不能超過多少天?
②在這次加工生產過程中,應將多少噸桃子加工成桃脯才能獲取最大利潤?最大利潤為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系中的點
,將它的縱坐標
與橫坐標
的比
稱為點
的“理想值”,記作
.如
的“理想值”
.
(1)①若點在直線
上,則點
的“理想值”
等于_______;
②如圖,,
的半徑為1.若點
在
上,則點
的“理想值”
的取值范圍是_______.
(2)點在直線
上,
的半徑為1,點
在
上運動時都有
,求點
的橫坐標
的取值范圍;
(3),
是以
為半徑的
上任意一點,當
時,畫出滿足條件的最大圓,并直接寫出相應的半徑
的值.(要求畫圖位置準確,但不必尺規作圖)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△AOB是等腰直角三角形,∠AOB=90°,點A(2,1).
(1)求點B的坐標;
(2)求經過A、O、B三點的拋物線的函數表達式;
(3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com