日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2011•宣城模擬)我們知道連接三角形兩邊中點的線段叫做三角形的中位線;通過證明可以得到“三角形的中位線平行于三角形的第三邊,且等于第三邊的一半”類似三角形中位線,我們把連接梯形兩腰中點的線段叫做梯形的中位線.如圖在梯形ABCD中,AD∥BC,點E,F分別是AB、CD的中點,觀察EF的位置,聯想三角形中位線的性質,你能發現梯形的中位線有什么性質?證明你的結論.
(2)如果點E分線段AB為
AE
EB
=
1
3
,EF∥BC交CD于F,AD=3,BC=5,請你利用第(1)的結論求出EF=
3.5
3.5
(直接填寫結果);
(3)如果點E分線段AB為
AE
EB
=
m
n
,EF∥BC交CD 于F,AD=a,BC=b,求EF的長.
分析:(1)連接AF并延長交BC的延長線于點G,然后利用角邊角證明△ADF與△GCF全等,根據全等三角形對應邊相等可得DF=CF、AD=CG,然后再根據三角形的中位線定理即可得證明;
(2)過點A作AH∥CD交EF于點G,交BC于點H,根據平行四邊形的對邊相等可得GF=AD,再根據平行線分線段成比例定理表示出EG的長度,然后相加即可求出EF的長;
(3)與(2)同理可求出EF的長.
解答:解:(1)證明:如圖1,連接AF并延長交BC的延長線于點G,
∵AD∥BC,
∴∠D=∠GCF,
∵F是CD的中點,
∴DF=FC,
在△ADF與△GCF中,
∠D=∠GCF
DF=FC
∠DFA=∠CFG(對頂角相等)

∴△ADF≌△GCF(ASA),
∴AF=FG,AD=CG,
∴EF∥BC,且EF=
1
2
BG,
∵BG=BC+CG,
∴EF=
1
2
(AD+BC),
即梯形的中位線平行于底邊并且等于兩底和的一半;

(2)如圖2,過點A作AH∥CD交EF于點G,交BC于點H,
∵AD∥BC,
∴GF=CH=AD,
AE
EB
=
1
3

EG
BH
=
AE
AB
=
1
4

∴EG=
BH
4

∴EF=EG+GF=
BH
4
+AD,
∵AD=3,BC=5,
∴EF=
5-3
4
+3=3.5;

(3)如圖3,過點A作AH∥CD交EF于點G,交BC于點H,
∵AD∥BC,
∴GF=CH=AD,
AE
EB
=
m
n

EG
BH
=
AE
AB
=
m
m+n

∴EG=
m
m+n
BH,
∴EF=EG+GF=
m
m+n
BH+AD,
∵AD=a,BC=b,
∴EF=
m
m+n
×(b-a)+a=
mb+na
m+n
點評:本題主要考查了梯形的中位線與平行線分線段成比例定理,通過作輔助線,把梯形的問題轉化為三角形的中位線進行解答是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2011•宣城模擬)2009年頒布的《國家中長期教育改革和發展規劃綱要》中指出,“加大教育投入,提高國家財政性教育經費支出占國內生產總值比例,2012年達到4%,”預計2012年我國國內生產總值為435000億元,那么2012年國家財政性教育經費支出應為
1.7×104
1.7×104
億元(結果用科學記數法表示,保留兩位有效數字)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•宣城模擬)如圖,一次函數y=kx+2的圖象與反比例函數y=
mx
的圖象交于點P,點P在第一象限.PA⊥x軸于點A,PB⊥y軸于點B,一次函數的圖象分別交x軸、y軸于點C、D,且S△PBD=4,OC=OA.求一次函數與反比例函數的解析式.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99爱国产 | 国产一区二区三区久久久 | 日韩最新网址 | 91精品国产日韩91久久久久久 | 国产精品久久久久久久久久久免费看 | 黄色小视频免费观看 | 欧美xxxxxx视频 | 亚洲精品电影在线观看 | 日韩精品视频在线播放 | 国产亚洲一区二区av | 国产精品97在线 | 免费成人高清在线视频 | 日韩精品亚洲一区 | 国产在线1| 亚洲777| 搞黄视频在线观看 | 蜜桃视频成人m3u8 | 国产精品久久久久久久久久妞妞 | 青青草免费在线观看 | 色丁香综合| 极品美女一线天 | 亚洲精品国产第一综合99久久 | 日韩中文字幕无码一区二区三区 | 自拍亚洲 | 中文字幕一区在线观看视频 | 欧美色综合 | 国产一区观看 | 夜夜爽99久久国产综合精品女不卡 | 五月婷婷色 | 亚洲久草 | 伦理午夜电影免费观看 | 国产成人在线视频网站 | 91一区二区 | 欧美久久精品 | 青草青草久热精品视频在线观看 | 福利社午夜影院 | 欧美另类一区二区 | 久久韩剧| 六月丁香在线观看 | 亚洲品质自拍视频网站 | 欧美精品成人一区二区三区四区 |