【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
【答案】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=DE,
∵CD="3" ,
∴DE=3;
(2)在Rt△ABC中,由勾股定理得:AB=AC+BC=6+8=10,∴AB=10,
∴△ADB的面積為S△ADB=ABDE=
×10×3=15.
【解析】試題分析:(1)根據角平分線性質得出CD=DE,代入求出即可;
(2)利用勾股定理求出AB的長,然后計算△ADB的面積.
解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=DE,
∵CD=3,
∴DE=3;
(2)在Rt△ABC中,由勾股定理得:AB==
=10,
∴△ADB的面積為S△ADB=ABDE=
×10×3=15.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,A(a,0),B(b,0),C(﹣1,2)(見圖1),且
(1)求a、b的值;
(2)①在x軸的正半軸上存在一點M,使三角形COM的面積是三角形ABC的面積的一半,求出點M的坐標;
②在坐標軸的其它位置是否存在點M,使三角形COM的面積三角形ABC的面積的一半仍然成立? 若存在,請直接寫出符合條件的點M的坐標;
(3)如圖2,過點C作CD⊥y軸交y軸于點D,點P為線段CD延長線上的一動點,連接OP,OE平分∠AOP,OF⊥OE.當點P運動時, 的值是否會改變?若不變,求其值;若改變,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C為線段BD上的點,分別以BC,CD為邊作等邊三角形ABC和等邊三角形ECD,連接BE交AC于點M,連接AD交CE于點N,連接MN.試說明:(1);(2)
為等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過點C作CF⊥AE,垂足為F,過B作BD⊥BC交CF的延長線于D;若AC=12cm,求BD的長;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)計算:(a-2)(a2+2a+4)= ,
(2x-y)(4x2+2xy+y2)= .
(2)上面的整式乘法計算結果很簡單,由此又發現一個新的乘法公式: _________________________(請用含a、b的字母表示)
(3)下列各式能用你發現的乘法公式計算的是( )
A.(a-3)(a2-3a+9) B.(2m-n)(2m2+2mn+n2)
C.(4-x)(16+4x+x2) D.(m-n)(m2+2mn+n2)
(4)直接用公式計算: =
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com