【題目】已知MN∥EF∥BC,點A、D為直線MN上的兩動點,AD=a,BC=b,AE∶ED=m∶n;
(1)當點A、D重合,即a=0時(如圖1),試求EF.(用含m,n,b的代數式表示)
(2)請直接應用(1)的結論解決下面問題:當A、D不重合,即a≠0,
①如圖2這種情況時,試求EF.(用含a,b,m,n的代數式表示)
圖1
圖2
圖3
②如圖3這種情況時,試猜想EF與a、b之間有何種數量關系?并證明你的猜想.
【答案】(1)EF=;(2)①EF=
;②猜想:EF=
,證明詳見解析.
【解析】
(1)由EF∥BC,即可證得△AEF∽△ABC,根據相似三角形的對應邊成比例,即可證得=
,根據比例變形,即可求得EF的值;
(2)①連接BD,與EF交于點H,由(1)知, HF=,EH=
,又由EF=EH+HF,即可求得EF的值;
②連接DE,并延長DE交BC于G,根據平行線分線段成比例定理,即可求得BG的長,又由EF=與GC=BC-BG,即可求得EF的值.
解 (1)∵EF∥BC,
∴△AEF∽△ABC,
∴=
,
∵=
,
∴=
,
又BC=b,
∴=
,
∴EF=;
(2)①如圖2,連接BD,與EF交于點H,
由(1)知,HF=,EH=
,
∵EF=EH+HF,
∴EF=;
②猜想:EF=,
證明:連接DE,并延長DE交BC于G,
由已知,得BG=,
EF=,
∵GC=BC-BG,
∴EF=(BC-BG)=
=
.
科目:初中數學 來源: 題型:
【題目】函數y=kx與y=-在同一坐標系內的大致圖象是( )
(1) (2)
(3) (4)
A. (1)和(2)
B. (1)和(3)
C. (2)和(3)
D. (2)和(4)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當你去看電影的時候,你想坐得離屏幕近一些,可是又不想為了看屏幕邊緣的鏡頭不停地轉動眼睛.如圖所示,點A、B分別為屏幕邊緣兩點,若你在P點,則視角為∠APB.如果你覺得電影院內P點是觀看的最佳位置,可是已經有人坐在那了,那么你會找到一個位置Q,使得在Q、P兩點有相同的視角嗎?請在圖中畫出來(保留畫圖痕跡,不寫畫法).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線的頂點為
,經過原點
且與
軸另一交點為
.
求點
的坐標;
若
為等腰直角三角形,求拋物線
的解析式;
現將拋物線
繞著點
旋轉
后得到拋物線
,若拋物線
的頂點為
,當
,且頂點
在拋物線
上時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=
(k≠0)的圖象于點C,連接AC,若△ABC的面積為8.則k的值為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△OAB的頂點坐標分別為O(0,0)、A(3,2)、B(2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應點D、E、F.
(1)在圖中畫出△DEF;
(2)點E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+,BC=2
,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】利客來超市新進一批工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)求出每天的銷售利潤w(元)與銷售單價x(元)之間的函數關系式;
(2)求出銷售單價為多少元時,每天的銷售利潤為4000元?
(3)如果該企業要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com