已知拋物線y=ax2-1與直線y=kx+7交于點A(x1,15)和13(x2,3),其中x1,x2是方程x2-2x-8=0的兩個實數根,求拋物線與直線的解析式.
解:因為方程x2-2x-8=0的兩根分別為-2,4. 所以x1=2,x2=4或x1=4,x2=-2 因此A(-2,15),B(4,3)或A(4,15),B(-2,3) 分別代入拋物線和直線的解析式中,得 (1)a=4,k=-4;a= (2)a=1,k=2;a=1,k=2 而(1)的兩組關系是矛盾,故應舍去; (2)是一樣的,故a=1,k=2. 所以拋物線和直線的解析式分別為: y=x2-1,y=2x+7. 思路點撥:先求出點A、B的坐標,然后代入拋物線和直線解析式,用待定系數確定a、k的值. 評注:這是一道用待定系數法求函數解析式的題目,它綜合考查了一元二次方程、直線、拋物線有關概念及分類討論思想. |
科目:初中數學 來源: 題型:
已知拋物線y=ax2+bx+c(a>0)經過點B(12,0)和C(0,-6),對稱軸為x=2.
(1)求該拋物線的解析式.
(2)點D在線段AB上且AD=AC,若動點P從A出發沿線段AB以每秒1個單位長度的速度勻速運動,同時另一個動點Q以某一速度從C出發沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若存在,請說明理由.
(3)在(2)的結論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐
標;若存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012屆山東鄒城北宿中學九年級3月月考數學試卷(帶解析) 題型:解答題
已知拋物線y=ax2+bx-4a經過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)若點D(m,m+1)在第一象限的拋物線上, 求點D關于直線BC對稱的點的坐標;
(3)在(2)的條件下,連結BD,若點P為拋物線上一點,且∠DBP=45°,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源:2010-2011年浙江省嵊州市九年級上學期期末考試數學卷 題型:解答題
(本小題滿分14分)
如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C(0,3)。設拋物線的頂點為D,求解下列問題:
1.(1)求拋物線的解析式和D點的坐標;
2.(2)過點D作DF∥軸,交直線BC于點F,求線段DF的長,并求△BCD的面積;
3.(3)能否在拋物線上找到一點Q,使△BDQ為直角三角形?若能找到,試寫出Q點的坐標;若不能,請說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com