日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
已知拋物線y=
1
2
mx2-
3
2
mx-2m交x軸于A(x1,0),B(x2,0)交y軸負半軸于C點,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求拋物線的解析式;
(2)在x軸的下方是否存在著拋物線上的點P,使∠APB為銳角?若存在,求出P點的橫坐標的范圍;若不存在,請說明理由.
(3)如圖點E(2,-5),將直線CE向上平移a個單位與拋物線交于M,N兩點,若AM=AN,求a的值.
(1)拋物線y=
1
2
mx2-
3
2
mx-2m交x軸于A(x1,0),B(x2,0),
所以x1+x2=3,x1•x2=-4m,
∵拋物線y=
1
2
mx2-
3
2
mx-2m交y軸負半軸于C點,
∴點C(0,-2m),-2m<0,
∴m>0,
∵x1<0<x2
∴AO+OB=-x1+x2,OC=|-2m|=2m,
∴(AO+OB)2=(-x1+x22=(x1+x22-4x1•x2=9+16m,
12OC+1=24m+1,
∴9+16m=24m+1,
解得m=1,
即拋物線的解析式為:y=
1
2
x2-
3
2
x-2;

(2)易知:A點坐標為(-1,0),B點坐標為(4,0),C點坐標為(0,-2),
連接AC,BC,AC=
5
,BC=2
5
,AB=5,
∴AC2+BC2=AB2
∴∠ACB=90°.
設C關于拋物線對稱軸的對稱點為C′,那么C′坐標為(3,-2),
根據拋物線的對稱性可知:如果連接AC′、BC′,那么∠AC′B=90°,
因此如果以AB為直徑作圓,那么此圓必過C,C′,
根據圓周角定理可知:x軸下方的半圓上任意一點和A、B組成的三角形都是直角三角形,
如果設P點橫坐標為x,那么必有當0<x<3時,∠APB為銳角,
故當0<x<3時,∠APB為銳角;

(3)∵C(0,-2),E(2,-5),
∴直線CE的解析式為y=-
3
2
x-2.
設直線CE向上平移a個單位后的解析式為y=-
3
2
x+b,則-2+a=b,
設直線y=-
3
2
x+b與拋物線y=
1
2
x2-
3
2
x-2交于M,N兩點,設M(x1,y1),N(x2,y2).
∵-
3
2
x+b=
1
2
x2-
3
2
x-2,
1
2
x2-2-b=0,
∴x1+x2=0,
∴點M與點N的橫坐標互為相反數,
設點M與的橫坐標為t,則M(t,-
3
2
x+b),N(-t,
3
2
t+b),
∵AM=AN,A(-1,0),
∴(t+1)2+(-
3
2
t+b)2=(t-1)2+(
3
2
t+b)2
整理,得4t-6bt=0,
∵t=0時,M,N兩點都與點C重合,不合題意舍去,
∴當t≠0時,b=
2
3

此時-2+a=
2
3
,解得a=
8
3

故所求a的值為
8
3
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+bx+4上有不同的兩點E(k+3,0)和F(-k-1,0).
(1)求拋物線的解析式.
(2)如圖,拋物線y=-
1
2
x2+bx+4與x軸和y軸的正半軸分別交于點A和B,M為AB的中點,∠PMQ在AB的同側以M為中心旋轉,且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D.設AD的長為m(m>0),BC的長為n,求n和m之間的函數關系式.
(3)當k>0且∠PMQ的邊過點F時,求m、n的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某水產品養殖企業為指導該企業某種水產品的養殖和銷售,對歷年市場行情和水產品養殖情況進行了調查.調查發現這種水產品的每千克售價y1(元)與銷售月份x(月)滿足關系式y=-
3
8
x+36,而其每千克成本y2(元)與銷售月份x(月)滿足的函數關系如圖所示.
(1)試確定b、c的值;
(2)求出這種水產品每千克的利潤y(元)與銷售月份x(月)之間的函數關系式;
(3)“五•一”之前,幾月份出售這種水產品每千克的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

若f(x)>0,符號
ba
f(x)dx
表示函數y=f(x)的圖象與過點(a,0),(b,0)且和x軸垂直的直線及x軸圍成圖形的面積.如圖,
21
(x+1)dx
表示梯形ABCD的面積.設A=
21
2
x
dx
B=
21
(-x+3)dx
C=
21
(-
3
2
x2+
7
2
x)dx
,則A,B,C中最大的是(  )
A.AB.BC.CD.無法比較

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=ax2-2x+c與它的對稱軸相交于點A(1,-4),與y軸交于C,與x軸正半軸交于B.
(1)求這條拋物線的函數關系式;
(2)設直線AC交x軸于D,P是線段AD上一動點(P點異于A,D),過P作PEx軸交直線AB于E,過E作EF⊥x軸于F,求當四邊形OPEF的面積等于
7
2
時點P的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

(1)在Rt△ABC中,BC=3,AB=4,則AC=______.
(2)如圖,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若點P從點B出發,以2cm/s的速度在BC所在的直線上運動.設點P的運動時間為t,試求當t為何值時,△ACP是等腰三角形?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

歡歡家想利用房屋側面的一面墻,再砌三面墻,圍成一個矩形豬圈(如圖),一面墻的中間留出1米寬的進出門(門使用另外的材料).現備有足夠砌11米長的圍墻的材料,設豬圈與已有墻面垂直的墻的長度為x米,豬圈面積為y平方米.
(1)寫出y與x之間的函數關系式.
(2)要使豬圈面積為16平方米,如何設計三面圍墻的長度.
(3)能否使豬圈面積為20平方米?說明理由.
(4)你能求出豬圈面積的最大值嗎?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在直角坐標系中,正方形ABOD的邊長為a,O為原點,點B在x軸的負半軸上,點D在y軸的正半軸上,直線OE的解析式為y=2x,直線CF過x軸上的一點C(-
3
5
a
,0)且與OE平行,現正方形以每秒
a
10
的速度勻速沿x軸正方向平行移動,設運動時間為t秒,正方形被夾在直線OE和CF間的部分的面積為S.
(1)當0≤t<4時,寫出S與t的函數關系式;
(2)當4≤t≤5時,寫出S與t的函數關系式,在這個范圍內S有無最大值?若有,請求出最大值,若沒有請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某汽車制造公司計劃生產A、B、C三種型號的汽車共80輛.并且公司在設計上要求,A、C兩種型號之間按如圖所示的函數關系生產.該公司投入資金不少于1212萬元,但不超過1224萬元,且所有資金全部用于生產這三種型號的汽車,三種型號的汽車生產成本和售價如下表:
ABC
成本(萬元/輛)121518
售價(萬元/輛)141822
設A種型號的汽車生產x輛;
(1)設C種型號的汽車生產y輛,求出y與x的函數關系式;
(2)該公司對這三種型號汽車有哪幾種生產方案?
(3)設該公司賣車獲得的利潤W萬元,求公司如何生產獲得利潤最大?
(4)根據市場調查,每輛A、B型號汽車的售價不會改變,每輛C型號汽車在不虧本的情況下售價將會降價a萬元(a>0),且所生產的三種型號汽車可全部售出,該公司又將如何生產獲得利潤最大?(注:利潤=售價-成本)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人国产精品一区 | 91国产精品 | 成人欧美一区二区三区在线观看 | 欧美日韩激情在线 | 久久久成 | 青青草91视频 | 成人欧美一区二区 | 狠狠狠 | 欧美日韩高清 | 日韩在线观看中文字幕 | 伊人网av| 99久久综合国产精品二区 | 欧美日韩专区 | 欧美国产视频 | 精品久久久久久久久久久久久久 | 天天插天天操天天干 | 国产精品99 | 日本黄色精品 | 夜夜操av| 精品国产a| 欧美国产日韩一区 | 亚洲伊人久久综合 | 欧美成人资源 | 欧美在线高清 | 久久午夜精品影院一区 | 免费看一区二区三区 | 亚洲精品一区二区三区四区高清 | xxxx午夜 | 日韩一区欧美 | 青青青国产精品一区二区 | 草草视频在线观看 | julia中文字幕久久一区二区 | 亚洲女人天堂成人av在线 | 久久国产精品99久久久久久牛牛 | 亚洲自拍在线观看 | 国内精品久久久久久影视8 久久亚洲精品国产一区最新章节 | 亚洲系列第一页 | 天久久 | 色国产一区 | av电影院在线观看 | 欧美日韩1区2区3区 www.日韩精品 |