日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

作業寶如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

解:(1)∵拋物線的頂點為坐標原點,
∴A、D關于拋物線的對稱軸對稱;
∵E是AB的中點,
∴O是矩形ABCD對角線的交點,又B(2,1)
∴A(2,-1)、D(-2,-1);
由于拋物線的頂點為(0,0),可設其解析式為:y=ax2,則有:
4a=-1,a=-
∴拋物線的解析式為:y=-x2

(2)①證明:由拋物線的解析式知:P(a,-a2),而R(a,1)、F(0,-1),
則:PF===a2+1,PR=1-(-a2)=a2+1.
∴PF=PR.

②由①得:RF=
若△PFR為等邊三角形,則RF=PF=PR,得:
=a2+1,即:a4-a2-3=0,得:
a2=-4(舍去),a2=12;
∴a=±2,-a2=-3;
∴存在符合條件的P點,坐標為(2,-3)、(-2,-3).

③同①可證得:QF=QS;
在等腰△SQF中,∠1=(180°-∠SQF);
同理,在等腰△RPF中,∠2=(180°-∠RPF);
∵QS⊥BC、PR⊥BC,
∴QS∥PR,∠SQP+∠RPF=180°
∴∠1+∠2=(360°-∠SQF-∠RPF)=90°
∴∠SFR=180°-∠1-∠2=90°,
即△SFR是直角三角形.
分析:(1)根據題意能判斷出點O是矩形ABCD的對角線交點,因此D、B關于原點對稱,A、B關于x軸對稱,得到A、D的坐標后,利用待定系數法可確定拋物線的解析式.
(2)①首先根據拋物線的解析式,用一個未知數表示出點P的坐標,然后表示出PF、RF的長,兩者進行比較即可得證;
②首先表示RF的長,若△PFR為等邊三角形,則滿足PF=PR=FR,列式求解即可;
③根據①的思路,不難看出QF=QS,若連接SF、RF,那么△QSF、△PRF都是等腰三角形,先用∠SQF、∠RPF表示出∠DFS、∠RFP的和,用180°減去這個和值即可判斷出△RSF的形狀.
點評:該題考查了二次函數的性質及解析式的確定、矩形的性質、特殊三角形的判定等知識,綜合性較強.在解答題目時,要注意數形結合,并靈活應用前面小題中證得的結論.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標;否則,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點,C為拋物線的頂點,過點A作AP∥精英家教網BC交拋物線于點P.
(1)求A,B,C三點坐標;
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點M,過點M作ME⊥x軸于點E,使A,M,E三點為頂點的三角形與△PCA相似?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=ax2+bx+c(a≠0)經過原點和點(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),拋物線的對稱軸x=2交x軸于點E.
(1)求交點A的坐標及拋物線的函數關系式;
(2)在平面直角坐標系xOy中是否存在點P,使點P與A,B,C三點構成一個平行四邊形?若存在,請直接寫出點P坐標;若不存在,請說明理由;
(3)連接CB交拋物線對稱軸于點D,在拋物線上是否存在一點Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日韩免费视频一区二区 | 99久久国产综合精品女不卡 | 色婷婷综合久久久久中文一区二区 | 亚洲成人中文字幕 | 色精品 | 午夜在线 | 亚洲cb精品一区二区三区 | 91精品国产乱码久久久久久久久 | 精品无码久久久久国产 | 男女视频网站 | 精品视频免费 | 日韩一区二区三区四区五区 | 免费在线观看av | 国产精品国产三级国产普通话蜜臀 | 天天干视频| 99视频精品 | 日韩久久一区 | 日本亚洲欧美 | 国产精品视频免费观看 | 日本在线观看视频一区 | 欧美精品一区在线 | 亚洲wu码 | 色婷婷一区二区三区四区 | 国产在线导航 | 欧美精品久久久久久久监狱 | 成人欧美一区二区三区黑人孕妇 | 久久一卡二卡 | 青青草一区二区三区 | 欧美一区二区在线免费观看 | 亚洲网色 | 久久免费高清视频 | 激情国产 | 欧美日本亚洲 | 亚洲国产精品一区 | 国产精品一区一区三区 | 国产第一二区 | 成人av电影免费在线观看 | 日韩区| 在线成人一区 | 性xxxxxxxxx18欧美 | 国产精品成人国产乱一区 |