【題目】閱讀下列材料:
小明遇到一個問題:在中,
,
,
三邊的長分別為
、
、
,求
的面積.
小明是這樣解決問題的:如圖①所示,先畫一個正方形網格(每個小正方形的邊長為),再在網格中畫出格點
(即
三個頂點都在小正方形的頂點處),從而借助網格就能計算出
的面積.他把這種解決問題的方法稱為構圖法.
參考小明解決問題的方法,完成下列問題:
()圖
是一個
的正方形網格(每個小正方形的邊長為
) .
①利用構圖法在答卷的圖中畫出三邊長分別為
、
、
的格點
.
②計算①中的面積為__________.(直接寫出答案)
()如圖
,已知
,以
,
為邊向外作正方形
,
,連接
.
①判斷與
面積之間的關系,并說明理由.
②若,
,
,直接寫出六邊形
的面積為__________.
【答案】(1)①見解析,②8;(2)①△PQR與△PEF面積相等,理由見解析,②32.
【解析】試題分析:(1)①利用勾股定理計算后畫出即;②利用恰好能覆蓋△ABC的長方形的面積減去三個小直角三角形的面積即可;(2)①△PQR與△PEF面積相等,如圖2,作RM⊥PQ于點M,EN⊥FP的延長線于點N,易證△PMR≌△PNE,可得RM=EN,根據等底等高的兩個三角形的面積相等即可得結論;②六邊形AQRDEF的面積=邊長為的正方形面積+邊長為
的正方形面積+△PEF的面積+△PQR的面積,其中兩個三角形的面積分別用長方形的面積減去各個小三角形的面積.
試題解析:
()①如圖
.
②.
()①
與
面積相等,
理由:如圖,作
于點
,
的延長線于點
,
在與
中,
,
∴≌
,
∴,
,
,
∴.
②∵,
,
,
將這個六邊形放入網可行中,它的面積為,
∴
.
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)連接OE,若BC=4,求△OEC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:給定關于x的函數y,對于該函數圖象上任意兩點(x1,y1),(x2,y2),
當x1﹤x2時,都有y1﹤y2,稱該函數為增函數.根據以上定義,可以判斷下面所給的函數中,是增函數的有______________(填上所有正確答案的序號).
① y = 2x; ② y =x+1; ③ y = x2 (x>0); ④
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為宣傳“義務教育均衡發展”相關政策,需要制作宣傳單,現有甲、乙兩家文化公司可供選擇,制作該宣傳單的收費標準如下:
甲文化公司:收費y(元)與印制數x(張)的函數關系如下表:
印制數x(張) | … | 50 | 100 | 150 | … |
收費y(元) | … | 7.5 | 15 | 22.5 | … |
乙文化公司:500張以內(含500張),按每張0.20元收費;超過500張的部分,按照每張0.10元收費.
(1)根據表格中的數據,求甲文化公司收費y(元)與印制數x(張)之間的函數表達式.
(2)若該校準備在甲、乙兩家公司共印刷400張宣傳單,費用不超過65元,則在甲文化公司最少要印制多少張?
(3)宣傳單發放后,深受家長們的喜愛,學校決定再加印b張,若在甲、乙文化公司中任選一家,應如何選擇,費用較少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com