【題目】某高中學校為高一新生設計的學生板凳的正面視圖如圖所示,其中BA=CD,BC=20cm,BC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應為多長?(材質及其厚度等暫忽略不計).
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的弦,過點O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求證:BC是⊙O的切線;
(2)已知∠BAO=25°,點Q是弧AmB上的一點.
①求∠AQB的度數;
②若OA=18,求弧AmB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(發現)如圖,點E,F分別在正方形ABCD的邊BC,CD上,連接EF.因為AB=AD,所以把ΔABE繞A逆時針旋轉90°至ΔADG,可使AB與AD重合.因為∠CDA=∠B=90°,所以∠FDG=180°,所以F、D、G共線.
如果__________(填一個條件),可得ΔAEF≌ΔAGF.經過進一步研究我們可以發現:當BE,EF,FD滿足__________時,∠EAF=45°.
(應用)
如圖,在矩形ABCD中,AB=6,AD=m,點E在邊BC上,且BE=2.
(1)若m=8,點F在邊DC上,且∠EAF=45°(如圖),求DF的長;
(2)若點F在邊DC上,且∠EAF=45°,求m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點E、F分別是邊BC、AC的中點,P是AB上一點,以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( )
A. 3 B. 3 C. 4 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司推出一款產品,經市場調查發現,該產品的日銷售量y(個)與銷售單價x(元)之間滿足一次函數關系.關于銷售單價,日銷售量,日銷售利潤的幾組對應值如下表:
銷售單價x(元) | 85 | 95 | 105 | 115 |
日銷售量y(個) | 175 | 125 | 75 | m |
日銷售利潤w(元) | 875 | 1875 | 1875 | 875 |
(注:日銷售利潤=日銷售量×(銷售單價﹣成本單價))
(1)求y關于x的函數解析式(不要求寫出x的取值范圍)及m的值;
(2)根據以上信息,填空:
該產品的成本單價是 元,當銷售單價x= 元時,日銷售利潤w最大,最大值是 元;
(3)公司計劃開展科技創新,以降低該產品的成本,預計在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產品的成本單價應不超過多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是
直徑,
于點
,連接
交
于點
,過點
作
的切線交
于點
,連
接交
于點
(1)求證:
(2)連接并延長,交
于點
,填空:
①當的度數為_________時,四邊形
為菱形;
②當的度數為__________時,四邊形
為正方形;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某電視臺在它的娛樂性節目中每期抽出兩名場外幸運觀眾,有一期甲、乙兩人被抽為場外幸運觀眾,他們獲得了一次抽獎的機會,在如圖所示的翻獎牌的正面4個數字中任選一個,選中后翻開,可以得到該數字反面的獎品,第一個人選中的數字第二個人不能再選擇了.
(1)如果甲先抽獎,那么甲獲得“手機”的概率是多少?
(2)小亮同學說:甲先抽獎,乙后抽獎,甲、乙兩人獲得“手機”的概率不同,且甲獲得“手機”的概率更大些.你同意小亮同學的說法嗎?為什么?請用列表或畫樹狀圖分析.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現
如圖①,矩形的對角線
交于點
,且
,點
為線段
上任意一點,以
為邊作等邊三角形
,連接
,則
與
之間的數量關系是 ;
(2)類比延伸
如圖②,在正方形中,點
為
邊上任意一點,以
為邊作正方形
,
為正方形
的中心,連接
,直接寫出
與
的數量關系為 ;
(3)拓展遷移
如圖③,在菱形中,
,點
為
邊上一點,以
為對角線作菱形
,滿足
,連接
,猜想
與
的數量關系,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com