日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,在對Rt△OAB依次進行位似、軸對稱和平移變換后得到△O′A′B′.
(1)在坐標紙上畫出這幾次變換相應的圖形;
(2)設P(x,y)為△OAB邊上任一點,依次寫出這幾次變換后點P對應點的坐標.

解:(1)如圖.先把△ABC作位似變換,擴大2倍,再作關于y軸對稱的三角形,然后向右平移4個單位,再向上平移5個單位.

(2)設坐標紙中方格邊長為單位1,則P(x,y)以O為位似中心放大為原來的2倍(2x,2y),經y軸翻折得到(-2x,2y),再向右平移4個單位得到(-2x+4,2y),再向上平移5個單位得到(-2x+4,2y+5).
分析:分別根據位似變換、軸對稱、平移的作圖方法作圖即可;根據這些變換的特點可求出變換后點P對應點的坐標.
點評:本題主要考查:位似變換、軸對稱、平移.此題隱含著逆向思維.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第35章《圓(二)》中考題集(17):35.3 探索切線的性質(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第28章《圓》中考題集(50):28.2 與圓有關的位置關系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(16):3.1 直線與圓的位置關系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數學 來源:第3章《圓》中考題集(44):3.5 直線和圓的位置關系(解析版) 題型:解答題

已知:如圖,AB是⊙O的直徑,P是AB上的一點(與A、B不重合),QP⊥AB,垂足為P,直線QA交⊙O于C點,過C點作⊙O的切線交直線QP于點D.則△CDQ是等腰三角形.
對上述命題證明如下:
證明:連接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C點
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
問題:對上述命題,當點P在BA的延長線上時,其他條件不變,如圖所示,結論“△CDQ是等腰三角形”還成立嗎?若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 99久久久免费视频 | 天天操操 | 日本中文字幕在线播放 | 久久亚洲国产精品 | 欧美精品一区二区三区在线 | 亚洲好看站 | 欧美综合色 | 国产亚洲欧美在线 | 四虎av在线 | 青青久久久 | 少妇一区二区三区免费观看 | 色鲁97精品国产亚洲 | 国产一区 日韩 | 久久人人爽人人爽人人片av不 | 久久久久久网站 | 中文字幕在线不卡 | 国产精品久久久久久久久久久久久 | 国产精品99久久免费观看 | 久久综合久久综合久久综合 | 在线播放91 | 国内久久 | 国产精品一区在线看 | 福利一区福利二区 | 99在线看| 在线一区观看 | 国产三区精品 | 国产区视频在线观看 | 欧美成人高清视频 | 久久精品亚洲精品 | 国产极品视频 | 国产美女自拍视频 | 91在线观看网站 | 日韩一二三区在线观看 | 91玖玖| 欧美极品一区二区三区 | 最新日韩av网址 | 色网站免费看 | av电影院在线观看 | 日本1区2区| 久久综合狠狠综合久久综合88 | 精品国产一区二区三区久久久蜜臀 |