【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對折成∠COB(OA與OB重合),從O點引一條射線OE,使∠BOE=∠EOC,再沿OE把角剪開,若剪開后得到的3個角中最大的一個角為76°,則∠AOB=_____________°.
科目:初中數學 來源: 題型:
【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(﹣4,4).點P從點A出發,以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發,以相同的速度沿x軸的正方向運動,規定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設點P運動的時間為t(s).
(1)∠PBD的度數為 ,點D的坐標為 (用t表示);
(2)當t為何值時,△PBE為等腰三角形?
(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次函數y=kx-6中,已知y隨x的增大而減。铝嘘P于反比例函數y=
的描述,其中正確的是( )
A. 當x>0時,y>0 B. y隨x的增大而增大
C. y隨x的增大而減小 D. 圖像在第二、四象限
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】A、B兩組卡片共5張,A中三張分別寫有數字2,4,6,B中兩張分別寫有3,5.它們除了數字外沒有任何區別.
(1)隨機地從A中抽取一張,求抽到數字為2的概率;
(2)隨機地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結果,現制定這樣一個游戲規則:若選出的兩數之積為3的倍數,則甲獲勝;否則乙獲勝.請問這樣的游戲規則對甲乙雙方公平嗎?為什么?
(3)如果不公平請你修改游戲規則使游戲規則對甲乙雙方公平.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,拋物線y=﹣x2+bx+c與x軸、y軸分別相交于點A(﹣1,0)、B(0,3)兩點,其頂點為D.
(1)求這條拋物線的解析式;
(2)若拋物線與x軸的另一個交點為E. 求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出P點的坐標,若不存在說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)已知關于x的方程kx=11﹣2x有整數解,則負整數k的值為 .
(2)若a+b+c=0,且a>b>c,以下結論:
①a>0,c>0;
②關于x的方程ax+b+c=0的解為x=1;
③a2=(b+c)2;
④的值為0或2;
⑤在數軸上點A、B、C表示數a、b、c,若b<0,則線段AB與線段BC的大小關系是AB>BC.
其中正確的結論是 (填寫正確結論的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1,3,6,10…這樣的數稱為“三角形數”,而把1,4,9,16…這樣的數稱為“正方形數”.從圖中可以發現,任何一個大于1的“正方形數”都可以看作兩個相鄰“三角形數”之和.下列等式中,符合這一規律的是( 。
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:問題:如圖1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,點A,B,E在同一條直線上,P是線段DF的中點,連接PG,PC,探究PG與PC的位置關系。
(1)請你寫出上面問題中線段PG與PC的位置關系,并說明理由;
(2)將圖1中的菱形BEFG繞點B順時針旋轉,使菱形BEFG的對角線BF恰好與菱形ABCD的邊AB在同一條直線上,原問題中的其他條件不變(如圖2).你在(1)中得到的結論是否發生變化?寫出你的猜想并加以證明,
(3)將菱形ABCD和菱形BEFG均改成正方形,如圖3,P為DF的中點,此時PG與PC的位置關系和數量關系分別是什么?直接寫出答案。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某長方形廣場的四角都有一塊半徑相同的圓形的草地,已知圓形的半徑為r米,長方形的長為a米,寬為b米.
(1)請列式表示廣場空地的面積;
(2)若長方形的長為300米,寬為200米,圓形的半徑為10米,計算廣場空地的面積(計算結果保留π).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com