【題目】如圖1,在△ABC中,∠A=60°,∠CBM,∠BCN是△ABC的外角,∠CBM,∠BCN的平分線BD,CD交于點D.
(1)求∠BDC的度數;
(2)在圖1中,過點D作DE⊥BD,垂足為點D,過點B作BF∥DE交DC的延長線于點F(如圖2),求證:BF是∠ABC的平分線.
【答案】(1)∠BDC=60°;(2)證明見解析.
【解析】
(1)依據三角形內角和定理可得,∠ABC+∠ACB=120°,進而得出∠CBM+∠BCN=360°﹣120°=240°,再根據∠CBM,∠BCN的平分線BD,CD交于點D,即可得到,∠DBC+∠BCD=120°,即可得出∠D=180°﹣120°=60°;
(2)依據DE⊥BD,BF∥DE,即可得出∠2+∠3=90°,∠1+∠4=90°,再根據∠3=∠4,可得∠1=∠2,進而得到BF是∠ABC的平分線.
解:(1)∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=120°,
又∵∠ABM=∠ACN=180°,
∴∠CBM+∠BCN=360°﹣120°=240°,
又∵∠CBM,∠BCN的平分線BD,CD交于點D,
∴∠CBD=∠CBM,∠BCD=
∠BCN,
∴△BCD中,∠DBC+∠BCD=(∠CBM+∠BCN)=
×240°=120°,
∴∠D=180°﹣120°=60°;
(2)如圖2,∵DE⊥BD,BF∥DE,
∴∠DBF=180°﹣90°=90°,
即∠2+∠3=90°,
∴∠1+∠4=90°,
又∵∠3=∠4,
∴∠1=∠2,
∴BF是∠ABC的平分線.
科目:初中數學 來源: 題型:
【題目】A,B兩地被大山阻隔,若要從A地到B地,只能沿著如圖所示的公路先從A地到C地,再由C地到B地.現計劃開鑿隧道A,B兩地直線貫通,經測量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道開通后與隧道開通前相比,從A地到B地的路程將縮短多少?(結果精確到0.1km,參考數據: ≈1.414,
≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一次課題學習中活動中,老師提出了如下一個問題:
點P是正方形ABCD內的一點,過點P畫直線l分別交正方形的兩邊于點M、N,使點P是線段MN的三等分點,這樣的直線能夠畫幾條?
經過思考,甲同學給出如下畫法:
如圖1,過點P畫PE⊥AB于E,在EB上取點M,使EM=2EA,畫直線MP交AD于N,則直線MN就是符合條件的直線l.
根據以上信息,解決下列問題:
(1)甲同學的畫法是否正確?請說明理由.
(2)在圖1中,能否畫出符合題目條件的直線?如果能,請直接在圖1中畫出.
(3)如圖2,A1、C1分別是正方形ABCD的邊AB、CD上的三等分點,且A1C1∥AD.當點P在線段A1C1上時,能否畫出符合題目條件的直線?如果能,可以畫出幾條?
(4)如圖3,正方形ABCD邊界上的A1、A2、B1、B2、C1、C2、D1、D2都是所在邊的三等分點.當點P在正方形ABCD內的不同位置時,試討論,符合題目條件的直線l的條數的情況.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點C從A點出發,在邊AO上以2cm/s的速度向O點運動,與此同時,點D從點B出發,在邊BO上以1.5cm/s的速度向O點運動,過OC的中點E作CD的垂線EF,則當點C運動了__s時,以C點為圓心,1.5cm為半徑的圓與直線EF相切.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對角線長分別為6和8的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為( )
A. 7 B. 6 C. 5 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.
(1)若該商品連續兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;
(2)經調查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
,點
從
點出發,沿著
以每秒
的速度向
點運動;同時點
從
點出發,沿
以每秒
的速度向
點運動,設運動時間為
秒.
(1)當為何值時,
;
(2)是否存在某一時刻,使?若存在,求出此時
的長;若不存在,請說理由;
(3)當時,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲乙兩臺智能機器人從同一地點出發,沿著筆直的路線行走了450cm.甲比乙先出發,乙出發一段時間后速度提高為原來的2倍.兩機器人行走的路程y(cm)與時間x(s)之間的函數圖像如圖所示,根據圖像所提供的信息解答下列問題:
(1)乙比甲晚出發_________秒,乙提速前的速度是每秒_________cm, =_________;
(2)已知甲勻速走完了全程,請補全甲的圖象;
(3)當x為何值時,乙追上了甲?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com