10
分析:首先過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,易得四邊形EMON是正方形,點A,O,D,E共圓,則可得△OEN是等腰直角三角形,求得EN的長,繼而證得Rt△AOM≌Rt△DON,得到AM=DN,繼而求得答案.
解答:過點O作OM⊥AE于點M,作ON⊥DE,交ED的延長線于點N,
∵∠AED=90°,
∴四邊形EMON是矩形,
∵正方形ABCD的對角線交于點O,
∴∠AOD=90°,OA=OD,
∴∠AOD+∠AED=180°,

∴點A,O,D,E共圓,
∴

=

,
∴∠AEO=∠DEO=

∠AED=45°,
∴OM=ON,
∴四邊形EMON是正方形,
∴EM=EN=ON,
∴△OEN是等腰直角三角形,
∵OE=8

,
∴EN=8,
∴EM=EN=8,
在Rt△AOM和Rt△DON中,

,
∴Rt△AOM≌Rt△DON(HL),
∴AM=DN=EN-ED=8-6=2,
∴AE=AM+EM=2+8=10.
故答案為:10.
點評:此題考查了正方形的判定與性質、全等三角形的判定與性質以及等腰直角三角形性質.此題難度較大,注意掌握輔助線的作法,注意掌握數形結合思想的應用.