日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是的中點,CM交AB于點N,若AB=4,求MN•MC的值.
【答案】分析:(1)已知C在圓上,故只需證明OC與PC垂直即可;根據圓周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切線;
(2)AB是直徑;故只需證明BC與半徑相等即可;
(3)連接MA,MB,由圓周角定理可得∠ACM=∠BCM,進而可得△MBN∽△MCB,故BM2=MN•MC;代入數據可得MN•MC=BM2=8.
解答:(1)證明:∵OA=OC,
∴∠A=∠ACO.
又∵∠COB=2∠A,∠COB=2∠PCB,
∴∠A=∠ACO=∠PCB.
又∵AB是⊙O的直徑,
∴∠ACO+∠OCB=90°.
∴∠PCB+∠OCB=90°.
即OC⊥CP,
∵OC是⊙O的半徑.
∴PC是⊙O的切線.(3分)

(2)證明:∵AC=PC,
∴∠A=∠P,
∴∠A=∠ACO=∠PCB=∠P.
又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,
∴∠COB=∠CBO,
∴BC=OC.
∴BC=AB.(6分)

(3)解:連接MA,MB,
∵點M是的中點,

∴∠ACM=∠BCM.
∵∠ACM=∠ABM,
∴∠BCM=∠ABM.
∵∠BMN=∠BMC,
∴△MBN∽△MCB.

∴BM2=MN•MC.
又∵AB是⊙O的直徑,
∴∠AMB=90°,AM=BM.
∵AB=4,
∴BM=2
∴MN•MC=BM2=8.(10分)
點評:此題主要考查圓的切線的判定及圓周角定理的運用和相似三角形的判定和性質的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結論不成立的是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久不色 | 99国产视频 | 久草福利资源 | 国产精品久久久久久福利 | 亚洲激情综合网 | 在线中文字幕播放 | 一区二区三区视频 | 久久国产香蕉视频 | 亚洲精品91 | 亚洲一区二区三区视频免费观看 | 欧美三级在线 | 国产精品日日夜夜 | 精品一区国产 | 99久久婷婷国产精品综合 | 国产av毛片 | 亚洲国产精品久久久久久 | 国产在线成人 | 亚洲精品国产高清 | 黄色影院| 欧美极品一区二区 | 天堂一区二区三区 | av大片 | 午夜精品久久久久久久 | 91在线观看视频 | 禁果av一区二区三区 | 色啪网 | 九九久久国产 | 日本黄在线 | 久久国产亚洲精品 | 极品美女国产精品免费一区 | 国产精品久久久久久久久久妞妞 | 国产精品a久久久久 | 亚洲乱码一区二区三区在线观看 | 亚洲美女网站 | 毛片免费网站 | 精品久久亚洲 | 国产一级一级国产 | 国产伦精品一区二区三区四区视频 | 青青草免费在线 | 中文字幕一区二区三区乱码图片 | 日韩欧美大片在线观看 |