【題目】如圖1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,點D在邊AB的延長線上,BD=3,過點D作DE⊥AB,與邊AC的延長線相交于點E,以DE為直徑作⊙O交AE于點F.
(1)求⊙O的半徑及圓心O到弦EF的距離;
(2)連接CD,交⊙O于點G(如圖2).求證:點G是CD的中點.
【答案】
(1)解:∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,
∵AB=5,BD=3,
∴AD=8,
∵∠ACB=90°,DE⊥AD,
∴∠ACB=∠ADE,
∵∠A=∠A,
∴△ACB∽△ADE,
∴ =
∴ =
=
∴DE=6,AE=10,
即⊙O的半徑為3;
過O作OQ⊥EF于Q,
則∠EQO=∠ADE=90°,
∵∠QEO=∠AED,
∴△EQO∽△EDA,
∴ =
,
∴ =
,
∴OQ=2.4,
即圓心O到弦EF的距離是2.4;
(2)解:連接EG,
∵AE=10,AC=4,
∴CE=6,
∴CE=DE=6,
∵DE為直徑,
∴∠EGD=90°,
∴EG⊥CD,
∴點G為CD的中點.
【解析】(1)根據勾股定理求出AC,證△ACB∽△ADE,得出 =
,代入求出DE=6,AE=10,過O作OQ⊥EF于Q,證△EQO∽△EDA,代入求出OQ即可;(2)連接EG,求出EG⊥CD,求出CE=ED,根據等腰三角形的性質求出即可.
科目:初中數學 來源: 題型:
【題目】為了保護視力,學校開展了全校性的視力保健活動,活動前,隨機抽取部分學生,檢查他們的視力,結果如圖所示(數據包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學生的視力,結果如表所示.
分組 | 頻數 |
4.0≤x<4.2 | 2 |
4.2≤x<4.4 | 3 |
4.4≤x<4.6 | 5 |
4.6≤x<4.8 | 8 |
4.8≤x<5.0 | 17 |
5.0≤x<5.2 | 5 |
(1)求所抽取的學生人數;
(2)若視力達到4.8及以上為達標,估計活動前該校學生的視力達標率;
(3)請選擇適當的統計量,從兩個不同的角度分析活動前后相關數據,并評價視力保健活動的效果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y= (k≠0)的圖象經過A,B兩點,過點A作AC⊥x軸,垂足為C,過點B作BD⊥x軸,垂足為D,連接AO,連接BO交AC于點E,若OC=CD,四邊形BDCE的面積為2,則k的值為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A.“明天降雨的概率是80%”表示明天有80%的時間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D.“拋一枚正方體骰子,朝上的點數為2的概率為 ”表示隨著拋擲次數的增加,“拋出朝上的點數為2”這一事件發生的頻率穩定在
附近
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】實踐操作
如圖,△ABC是直角三角形,∠ACB=90°,利用直尺和圓規按下列要求作圖,并在圖中標明相應的字母.(保留作圖痕跡,不寫作法)
(1)作∠BAC的平分線,交BC于點O;
(2)以O為圓心,OC為半徑作圓.
(3)在你所作的圖中,AB與⊙O的位置關系是;(直接寫出答案)
(4)若AC=5,BC=12,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.
(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數關系式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com