【題目】已知:正方形中,點
、
、
、
分別在
、
、
、
上,且
,
四邊形
是正方形嗎?為什么?
若正方形
的邊長為
,且
,請求出四邊形
的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,
的
、
兩個頂點在
軸上,頂點
在
軸的負半軸上.已知
,
,
的面積
,拋物線
經過
、
、
三點.
求此拋物線的函數表達式;
點
是拋物線對稱軸上的一點,在線段
上有一動點
,以每秒
個單位的速度從
向
運動,(不與點
,
重合),過點
作
,交
軸于點
,設點
的運動時間為
秒,試把
的面積
表示成
的函數,當
為何值時,
有最大值,并求出最大值;
設點
是拋物線上異于點
,
的一個動點,過點
作
軸的平行線交拋物線于另一點
.以
為直徑畫
,則在點
的運動過程中,是否存在與
軸相切的
?若存在,求出此時點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在我市“青山綠水”行動中,某社區計劃對面積為的區域進行綠化,經投標由甲、乙兩個工程隊來完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,如果兩隊各自獨立完成面積為
區域的綠化時,甲隊比乙隊少用6天.
(1)求甲、乙兩工程隊每天各能完成多少面積的綠化;
(2)若甲隊每天綠化費用是1.2萬元,乙隊每天綠化費用為0.5萬元,社區要使這次綠化的總費用不超過40萬元,則至少應安排乙工程隊綠化多少天?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AD是△ABC的角平分線,E、F分別是邊AB、AC的中點,連接DE、DF,在不再連接其他線段的前提下,要使四邊形AEDF成為菱形,還需添加一個條件,這個條件可以是 ;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE內部時,
①寫出圖中一對全等的三角形,并寫出它們的所有對應角;
②設的度數為x,∠
的度數為
,那么∠1,∠2的度數分別是多少?(用含有x或y的代數式表示)
③∠A與∠1、∠2之間有一種數量關系始終保持不變,請找出這個規律.
(2)如圖2,把△ABC紙片沿DE折疊,當點A落在四邊形BCDE外部時,∠A與∠1、∠2的數量關系是否發生變化?如果發生變化,求出∠A與∠1、∠2的數量關系;如果不發生變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了保護環境和提高果樹產量,某果農計劃從甲、乙兩個倉庫用汽車向A、B兩個果園運送有機化肥,甲、乙兩個倉庫分別可運出80噸和100噸有機化肥,A、B兩個果園分別需要110噸和70噸有機化肥.甲倉庫到A、B兩個果園的路程分別為15千米和25千米,乙倉庫到A、B兩個果園的路程都是20千米.設甲倉庫運往A果園x噸有機化肥,解答下列問題:
(1)甲倉庫運往B果園 噸有機化肥,乙倉庫運往B果園 噸有機化肥;
(2)若汽車每噸每千米的運費為2元,設總運費為y元,求y關于x的函數表達式,并求當甲倉庫運往A果園多少噸有機化肥時,總運費最省?此時的總運費是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠BAC=90°,以AC為邊向外作△ACD,F為BC上一點,連結AF.
(1)如圖1,若∠ACD=90°,∠CAD=30°,CD=1,AB=BF=2,求FC的長度.
(2)如圖2,若AB=AC,延長DC交AF延長線于H點,且∠AHD=90°,∠BCH=∠CAD,連結BD交AF于M點,求證:CD=2MH.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,CE∥BD,DE∥AC,若AC=4,則四邊形OCED的周長為( )
A. 4 B. 8 C. 10 D. 12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com