日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

【答案】分析:(1)作BC⊥x軸于C點,AD⊥x軸于D點,證明△CBO∽△DOA,利用線段比求出mn.
(2)由(1)得OA=mBO推出OB•OA=10,根據勾股定理求出mn的值.然后可得A,B的坐標以及拋物線解析式.
(3)假設存在直線l交拋物線于P、Q兩點,使PF:PQ=1:3,作PM⊥y軸于M點,QN⊥y軸于N點,設P坐標為(x,-x2+10),證明△PMF∽△QNF推出x值,繼而可解出點P、Q的坐標.
解答:(1)證明:作BC⊥x軸于C點,AD⊥x軸于D點,
∵A,B點坐標分別為(m,6),(n,1),
∴BC=1,OC=-n,OD=m,AD=6,
又OA⊥OB,
易證△CBO∽△DOA,
=

∴mn=-6.

(2)解:由(1)得,∵△CBO∽△DOA,
==,即OA=mBO,
又∵S△AOB=10,
OB•OA=10,
即OB•OA=20,
∴mBO2=20,
又OB2=BC2+OC2=n2+1,
∴m(n2+1)=20,
∵mn=-6,
∴m=2,n=-3,
∴A坐標為(2,6),B坐標為(-3,1),易得拋物線解析式為y=-x2+10.

(3)解:直AB為y=x+4,且與y軸交于F(0,4)點,
∴OF=4,
假設存在直線l交拋物線于P,Q兩點,且使S△POF:S△QOF=1:3,如圖所示,
則有PF:FQ=1:3,作PM⊥y軸于M點,QN⊥y軸于N點,
∵P在拋物線y=-x2+10上,
∴設P坐標為(x,-x2+10),
則FM=OM-OF=(-x2+10)-4=-x2+6,
易證△PMF∽△QNF,

∴QN=3PM=-3x,NF=3MF=-3x2+18,
∴ON=-3x2+14,
∴Q點坐標為(-3x,3x2-14),
∵Q點在拋物線y=-x2+10上,
∴3x2-14=-9x2+10,
解得:x=-
∴P坐標為,Q坐標為
∴易得直線PQ為y=2x+4.
根據拋物線的對稱性可得直線PQ另解為y=-2x+4.
點評:本題考查的是二次函數的圖象與應用相結合的有關知識,考生要注意的是假設法的求證方法,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(40)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2011年廣東省茂名市化州市文樓鎮第一中學中考數學一模試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2007年山東省濰坊市中考數學試卷(解析版) 題型:解答題

(2007•濰坊)如圖,已知平面直角坐標系xOy中,點A(m,6),B(n,1)為兩動點,其中0<m<3,連接OA,OB,OA⊥OB.
(1)求證:mn=-6;
(2)當S△AOB=10時,拋物線經過A,B兩點且以y軸為對稱軸,求拋物線對應的二次函數的關系式;
(3)在(2)的條件下,設直線AB交y軸于點F,過點F作直線l交拋物線于P,Q兩點,問是否存在直線l,使S△POF:S△QOF=1:3?若存在,求出直線l對應的函數關系式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品99在线| 三级毛片在线 | 欧美激情欧美激情在线五月 | 成人免费视频网站在线观看 | 日韩精品久久久 | 麻豆视频91 | 欧美三区| 岛国免费av | 欧美精品一区二区三区蜜臀 | 日韩精品一区二区三区视频播放 | 欧美在线观看一区 | 色综久久 | 日本激情视频 | 日本精品在线播放 | 波多野结衣中文字幕在线视频 | 自拍视频在线 | 一级在线观看 | 一区二区三区久久 | 日本免费一二区 | 久久久久美女 | 日韩免费在线 | 黄在线免费观看 | 国产三级视频 | 黄色网址免费在线 | 亚洲国产一级 | 亚洲伊人久久网 | 国产成人精品午夜在线播放 | 深夜福利1000 | 国产不卡一区 | 一区二区三区精品视频 | 欧美成人一级 | 成人看片免费网站 | 精品国产乱码久久久久久久 | 国产福利久久 | 亚洲精选国产 | 日日av拍夜夜添久久免费 | 奇米影视77 | 免费一区二区 | 午夜免费福利视频 | 男女网站在线观看 | 成人免费av |