日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2013•營口)如圖,拋物線與x軸交于A(1,0)、B(-3,0)兩點,與y軸交于點C(0,3),設(shè)拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
分析:(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)利用勾股定理求得△BCD的三邊的長,然后根據(jù)勾股定理的逆定理即可作出判斷;
(3)分p在x軸和y軸兩種情況討論,舍出P的坐標,根據(jù)相似三角形的對應(yīng)邊的比相等即可求解.
解答:解:(1)設(shè)拋物線的解析式為y=ax2+bx+c
由拋物線與y軸交于點C(0,3),可知c=3.即拋物線的解析式為y=ax2+bx+3.
把點A(1,0)、點B(-3,0)代入,得
a+b+3=0
9a-3b+3=0
解得a=-1,b=-2
∴拋物線的解析式為y=-x2-2x+3.
∵y=-x2-2x+3=-(x+1)2+4
∴頂點D的坐標為(-1,4);

(2)△BCD是直角三角形.
理由如下:解法一:過點D分別作x軸、y軸的垂線,垂足分別為E、F.
∵在Rt△BOC中,OB=3,OC=3,
∴BC2=OB2+OC2=18
在Rt△CDF中,DF=1,CF=OF-OC=4-3=1,
∴CD2=DF2+CF2=2
在Rt△BDE中,DE=4,BE=OB-OE=3-1=2,
∴BD2=DE2+BE2=20
∴BC2+CD2=BD2
∴△BCD為直角三角形.

解法二:過點D作DF⊥y軸于點F.
在Rt△BOC中,∵OB=3,OC=3
∴OB=OC∴∠OCB=45°
∵在Rt△CDF中,DF=1,CF=OF-OC=4-3=1
∴DF=CF
∴∠DCF=45°
∴∠BCD=180°-∠DCF-∠OCB=90°
∴△BCD為直角三角形.

(3)①△BCD的三邊,
CD
BC
=
2
3
2
=
1
3
,又
OA
OC
=
1
3
,故當P是原點O時,△ACP∽△DBC;
②當AC是直角邊時,若AC與CD是對應(yīng)邊,設(shè)P的坐標是(0,a),則PC=3-a,
AC
CD
=
PC
BD
,即
10
2
=
3-a
2
5
,解得:a=-9,則P的坐標是(0,-9),三角形ACP不是直角三角形,則△ACP∽△CBD不成立;
③當AC是直角邊,若AC與BC是對應(yīng)邊時,設(shè)P的坐標是(0,b),則PC=3-b,則
AC
BC
=
PC
BD
,即
10
3
2
=
3-b
2
5
,解得:b=-
1
3
,故P是(0,-
1
3
)時,則△ACP∽△CBD一定成立;
④當P在x軸上時,AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標是(d,0).
則AP=1-d,當AC與CD是對應(yīng)邊時,
AC
CD
=
AP
BC
,即
10
2
=
1-d
3
2
,解得:d=1-3
10
,此時,兩個三角形不相似;
⑤當P在x軸上時,AC是直角邊,P一定在B的左側(cè),設(shè)P的坐標是(e,0).
則AP=1-e,當AC與DC是對應(yīng)邊時,
AC
CD
=
AP
BD
,即
10
3
2
=
1-e
2
5
,解得:e=-9,符合條件.
總之,符合條件的點P的坐標為:P1(0,0),P2(0,-
1
3
),P3(-9,0)
點評:本題是相似三角形的判定與性質(zhì),待定系數(shù)法,勾股定理以及其逆定理的綜合應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•營口)如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•營口)如圖,直線AB、CD相交于點E,DF∥AB.若∠D=65°,則∠AEC=
115°
115°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•營口)如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為60°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為45°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度為
1
2
(即tan∠PCD=
1
2
).
(1)求該建筑物的高度(即AB的長).
(2)求此人所在位置點P的鉛直高度.(測傾器的高度忽略不計,結(jié)果保留根號形式)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•營口)如圖,點C是以AB為直徑的⊙O上的一點,AD與過點C的切線互相垂直,垂足為點D.
(1)求證:AC平分∠BAD;
(2)若CD=1,AC=
10
,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•營口)如圖1,△ABC為等腰直角三角形,∠ACB=90°,F(xiàn)是AC邊上的一個動點(點F與A、C不重合),以CF為一邊在等腰直角三角形外作正方形CDEF,連接BF、AD.
(1)①猜想圖1中線段BF、AD的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;
②將圖1中的正方形CDEF,繞著點C按順時針(或逆時針)方向旋轉(zhuǎn)任意角度α,得到如圖2、圖3的情形.圖2中BF交AC于點H,交AD于點O,請你判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中的等腰直角三角形ABC改為直角三角形ABC,∠ACB=90°,正方形CDEF改為矩形CDEF,如圖4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于點H,交AD于點O,連接BD、AF,求BD2+AF2的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 四虎免看黄| 91天天综合 | 九九九九精品九九九九 | 久久99深爱久久99精品 | 欧美日本色 | 伦乱视频| 欧洲美女7788成人免费视频 | 天天干天天谢 | 中文在线播放 | 国产精品毛片久久久久久久 | 亚洲精品视频免费在线 | 日韩精品视频在线 | 久久久国产一区二区三区四区小说 | 在线激情av | 国产精品自拍av | 久久美女视频 | 久久久久久久久久久久久女国产乱 | 久久久久亚洲一区二区三区 | www.中文字幕在线 | 北条麻妃99精品青青久久主播 | 操操操操操| 日本另类αv欧美另类aⅴ | 日本久草 | 国产成人午夜 | 在线国产一区 | 日本久久久久久 | 中文字幕一页二页 | 久久精品黄色 | 国产精品视频99 | 亚洲精品一区二区三区 | 色综合久久88色综合天天6 | 日本一区二区视频在线 | 成人久久18免费观看 | 久久福利 | 亚洲精品乱 | 国产一区二区三区在线 | 成人国产精品久久久 | 国产精品成av人在线视午夜片 | 亚洲一区二区在线播放 | 五月婷婷六月综合 | 在线观看日韩av |