日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖①,已知拋物線y=ax2+bx+c經過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數表達式;
(2)求拋物線的頂點坐標和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).

【答案】分析:(1)把點A、B、C代入拋物線解析式y=ax2+bx+c利用待定系數法求解即可;
(2)把拋物線解析式整理成頂點式形式,然后寫出頂點坐標與對稱軸即可;
(3)根據頂點坐標求出向上平移的距離,再根據陰影部分的面積等于平行四邊形的面積,列式進行計算即可得解.
解答:解:(1)∵拋物線y=ax2+bx+c經過點A(0,3),B(3,0),C(4,3),

解得
所以拋物線的函數表達式為y=x2-4x+3;

(2)∵y=x2-4x+3=(x-2)2-1,
∴拋物線的頂點坐標為(2,-1),對稱軸為直線x=2;

(3)如圖,∵拋物線的頂點坐標為(2,-1),
∴PP′=1,
陰影部分的面積等于平行四邊形A′APP′的面積,
平行四邊形A′APP′的面積=1×2=2,
∴陰影部分的面積=2.
點評:本題考查了待定系數法求二次函數解析式,二次函數的性質,二次函數圖象與幾何變換,(3)根據平移的性質,把陰影部分的面積轉化為平行四邊形的面積是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,點D、E在x軸上,CF交y軸于點B(0,2),且其面積為8:
(1)此拋物線的解析式;
(2)如圖2,若點P為所求拋物線上的一動點,試判斷以點P為圓心,PB為半徑的圓與x軸的位置關系,并說明理由.
(3)如圖2,設點P在拋物線上且與點A不重合,直線PB與拋物線的另一個交點為Q,過點P、Q分別作x軸的垂線,垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線y=-x2+b x+c經過點A(1,0),B(-3,0)兩點,且與y軸交于點C.
(1)求b,c的值.
(2)在第二象限的拋物線上,是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存在,請說明理由.
(3)如圖2,點E為線段BC上一個動點(不與B,C重合),經過B、E、O三點的圓與過點B且垂直于BC的直線交于點F,當△OEF面積取得最小值時,求點E坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•南沙區一模)如圖1,已知拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=2OA=4.
(1)求該拋物線的函數表達式;
(2)設P是(1)中拋物線上的一個動點,以P為圓心,R為半徑作⊙P,求當⊙P與拋物線的對稱軸l及x軸均相切時點P的坐標.
(3)動點E從點A出發,以每秒1個單位長度的速度向終點B運動,動點F從點B出發,以每秒
2
個單位長度的速度向終點C運動,過點E作EG∥y軸,交AC于點G(如圖2).若E、F兩點同時出發,運動時間為t.則當t為何值時,△EFG的面積是△ABC的面積的
1
3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線y=ax2-2ax+b經過梯形OABC的四個頂點,若BC=10,梯形OABC的面積為18.
(1)求拋物線解析式;
(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,平移后的兩條直線分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設梯形O1A1B1C1的面積為S,A1、B1的坐標分別為(x1,y1)、(x2,y2).用含S的代數式表示x2-x1,并求出當S=36時點A1的坐標;
(3)如圖3,設圖1中點D坐標為(1,3),M為拋物線的頂點,動點P從點B出發,以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發,以與點P相同的速度沿著線段DM運動.P、Q兩點同時出發,當點Q到達點M時,P、Q兩點同時停止運動.設P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、x軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知拋物線的頂點為A(O,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美综合一区二区三区 | 国产成人精品免高潮在线观看 | 国产精品永久免费 | 日产精品久久久一区二区 | 在线 丝袜 欧美 日韩 制服 | 欧美激情a∨在线视频播放 欧美一级艳片视频免费观看 | 国产久精品 | 国产伦理一区二区 | 黄色大片网站在线观看 | 精品久久久久久国产 | 亚洲欧洲日本国产 | 性做久久久久久久免费看 | 91社区在线观看高清 | 美女精品视频在线 | 国变精品美女久久久久av爽 | 亚洲91精品 | 亚洲精品电影在线观看 | 青青草免费在线视频 | 亚洲综合在线一区二区 | 久久情趣视频 | 自拍偷拍视频网站 | 欧美视频一区二区在线 | 中文字幕日韩欧美一区二区三区 | 亚洲精品免费在线播放 | 亚洲高清一区二区三区 | 夜夜操天天操 | 日本在线观看视频网站 | 夜夜爆操| 国产不卡区| 欧美三级视频 | 欧美一级在线免费观看 | 久久午夜影院 | 久久精品国产免费 | 日本三级2018 | 中文字幕播放 | 热久久久久| 久久久资源 | 国产精品一二区 | 污网址在线看 | 天堂一区二区三区 | 在线亚洲一区二区 |