日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖(1)在直角坐標系中.一條曲線y=
k
x
(x>0)與矩形AOBC的兩邊交于M(4,2)、N兩點.且四邊形MONC的面積是8.
(1)說明:矩形AOBC是正方形.
(2)如圖(2).若點P(a,b)是這條曲線MN段(含端點)上的一動點,由點P向x軸、y軸作垂線PE、PD.垂足是E、D,與線段AB分別交于F、G.
①填空:點F的坐標
(4-b,b)
(4-b,b)
(用b的代數式表示);點G的坐標
(a,4-a)
(a,4-a)
〔用a的代數式表示);
②說明:△BOG∽△AFO;
③當點P在曲找y=
k
x
的MN段(含端點)上移動時.△OFC隨之變動.是否存在點P,使△OFG是等腰三角形?若存在,請直接寫出P點的坐標;若不存在,請說明理由.
分析:(1)先將M(4,2)代入y=
k
x
,運用待定系數法求出反比例函數的解析式,再根據反比例函數比例系數k的幾何意義得出S△AOM=S△BON=
1
2
|k|=4,則矩形AOBC的面積為16,又OA=4,根據面積公式得出OB=4,則矩形AOBC是正方形;
(2)①先運用待定系數法求出直線AB的解析式,再將點F的縱坐標b代入,求出點F的橫坐標;將點G的橫坐標a代入,求出點G的縱坐標;
②由于∠OBG=∠FAO=45°,再根據兩點間的距離公式分別求出AF、BG的長度,得出OB:AF=BG:OA,根據兩邊對應成比例且夾角相等的兩三角形相似即可證明△BOG∽△AFO;
③分三種情況討論:OF=OG;FO=FG;GO=GF,針對每一種情況,列出方程,解方程即可.
解答:解:(1)∵點M(4,2)在雙曲線y=
k
x
的圖象上,
∴k=4×2=8,
∴反比例函數的解析式為y=
8
x

∴S△AOM=S△BON=
1
2
|k|=4,
∴S矩形AOBC=S△AOM+S△BON+S四邊形MONC=4+4+8=16,
又∵OA=4,OA•OB=16,
∴OB=4,
∴OA=OB,
∴矩形AOBC是正方形;

(2)①設直線AB的解析式為y=mx+n,
將A(4,0),B(0,4)代入,得
4m+n=0
n=4

解得
m=-1
n=4

則直線AB的解析式為y=-x+4.
∵點P(a,b)是曲線y=
8
x
的MN段(含端點)上的一動點,由點P向x軸、y軸作垂線PE、PD.垂足是E、D,與線段AB分別交于F、G,
∴ab=8,點F的縱坐標為b,點G的橫坐標為a.
當y=b時,x=b-4,則點F的坐標為(4-b,b);
當x=a時,y=-a+4,則點G的坐標為(a,4-a);
②∵OA=OB=4,∠AOB=90°,
∴∠OBG=∠FAO=45°.
∵AF=
b2+b2
=
2
b,BG=
a2+a2
=
2
a,
∴AF•BG=
2
b•
2
a=2ab=2×8=16=OA•OB,
∴OB:AF=BG:OA.
在△BOG與△AFO中,
OB:AF=BG:OA
∠OBG=∠FAO=45°

∴△BOG∽△AFO;
③∵S△BON=
1
2
•OB•BN=4,OB=4,
∴BN=2,
∴N點坐標為(2,4).
∵點P(a,b)在曲線y=
8
x
的MN段(含端點)上移動,M(4,2),
∴2≤a≤4.
若△OFG是等腰三角形,分三種情況:
Ⅰ)如果OF=OG,那么(4-b)2+b2=(4-a)2+a2
整理,得a2-b2-4a+4b=0,
(a-b)(a+b-4)=0,
∴a-b=0或a+b-4=0,
∵ab=8,∴b=
8
a

∴a+b-4=0時,a+
8
a
-4=0,a2-4a+8=0,△<0,無解;
∴a=b=2
2
,P點坐標為(2
2
,2
2
);
Ⅱ)如果FO=FG,那么(4-b)2+b2=2(a+b-4)2
整理,得a2-8a-4b+24=0,
將b=
8
a
代入,整理得a3-8a2+24a-32=0,
(a-4)(a2-4a+8)=0,
∵a2-4a+8>0,
∴a-4=0,a=4,
∴P點坐標為(4,2);
Ⅲ)如果GO=GF,那么(4-a)2+a2=2(a+b-4)2
整理,得b2-8b-4a+24=0,
將a
8
b
代入,整理得b3-8b2+24b-32=0,
(b-4)(b2-4b+8)=0,
∵b2-4b+8>0,
∴b-4=0,b=4,
∴P點坐標為(2,4);
綜上可知,存在點P(2
2
,2
2
)或(4,2)或(2,4),能使△OFG是等腰三角形.
點評:本題考查了反比例函數的綜合題,其中涉及到運用待定系數法求函數的解析式,反比例函數的圖象與性質,矩形的性質,正方形的判定,相似三角形與等腰三角形的判定,有一定難度,其中(2)中第③小問進行分類討論是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,在直角坐標平面內,O為原點,點A的坐標為(10,0),點B在第一象限內,BO=5,精英家教網sin∠BOA=
35

求:(1)點B的坐標;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.精英家教網
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•大豐市一模)如圖所示,在直角坐標平面內,函數y=
mx
(x>0,m是常數)
的圖象經過A(1,4),B(a,b),其中a>1.過點A作x軸垂線,垂足為C,過點B作y軸垂線,垂足為D,連接AD、DC、CB.
(1)若△ABD的面積為4,求點B的坐標;
(2)求證:DC∥AB;
(3)四邊形ABCD能否為菱形?如果能,請求出四邊形ABCD為菱形時,直線AB的函數解析式;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.

(1)求點P的坐標;

(2)如果二次函數的圖像經過POA三點,求這個二次函數的解析式,并寫出它的圖像的頂點坐標M

(3)如果將第(2)小題中的二次函數的圖像向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

 


查看答案和解析>>

科目:初中數學 來源:2013年上海市中考數學模擬試卷(二)(解析版) 題型:解答題

如圖,已知在直角坐標平面內,點A的坐標為(3,0),第一象限內的點P在直線y=2x上,∠PAO=45度.
(1)求點P的坐標;
(2)如果二次函數的圖象經過P、O、A三點,求這個二次函數的解析式,并寫出它的圖象的頂點坐標M;
(3)如果將第(2)小題中的二次函數的圖象向上或向下平移,使它的頂點落在直線y=2x上的點Q處,求△APM與△APQ的面積之比.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美freesex交免费视频 | 国产中文视频 | a级黄色毛片免费观看 | 日本一区二区视频 | www久久久久久久 | 日本一区二区三区中文字幕 | 成人精品鲁一区一区二区 | 亚洲欧美日韩高清 | 亚洲视频免费在线观看 | 91麻豆久久久 | 色欧美片视频在线观看 | 精品免费视频 | www.日| 成人在线视频播放 | 国产精品二区一区二区aⅴ污介绍 | 蜜桃av在线播放 | 青青久久av北条麻妃海外网 | 91久久国产 | 91久久精品一区 | 久久国产综合 | 第一福利丝瓜av导航 | 成人一区二区av | 81精品国产乱码久久久久久 | 97国产一区二区 | 美女久久久久久久久久久 | 综合久久久久 | 亚洲 中文 欧美 日韩 在线观看 | 国产精品久久久久久福利一牛影视 | 日韩精品区 | 国产精品永久在线观看 | 九草av | 亚洲日韩aⅴ在线视频 | 99re在线视频 | 久草日本| 欧美精品一区在线发布 | 毛片链接 | 中文字幕不卡在线 | 在线成人国产 | 九色一区二区 | 最新超碰 | 精品国产一区二区三区小蝌蚪 |