【題目】如圖,正方形ABCD的邊長為4,點E是AB的中點,點P是邊BC上的動點,點Q是對角線AC上的動點(包括端點A,C),則EP+PQ的最小值是 .
【答案】
【解析】如圖作點E關于BC的對稱點E′,作E′Q′⊥AC于Q′交BC于P.
∴PE=PE′,
∴PQ+PE=PE′+PQ,
當Q用Q′重合時,PE+PQ最。ù咕段最短),
∵四邊形ABCD是正方形,
∴∠E′AQ′=45°,
∵AE′=6,
∴E′Q′=3
∴PE+PQ的最小值為3 .
【考點精析】利用勾股定理的概念和正方形的性質對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數與正比例函數y=ax相交于A(1,k),B(-k,-1)兩點。
(1)求反比例函數和正比例函數的解析式;
(2)將正比例函數y=ax的圖象平移,得到一次函數y=ax+b的圖象,與函數的圖象交于C(x1,y1)、D(x2,y2),且|x1-x2|·|y1-y2|=5,求b的值。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點C在x軸上方,y軸左側,距離x軸2個單位長度,距離y軸3個單位長度,則點C的坐標為( )
A.(﹣3,2)
B.(﹣2,﹣3)
C.(﹣2,3)
D.( 3,﹣2)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列語句中正確的是( )
A.正整數和負整數統稱為整數
B.有理數和無理數統稱為實數
C.開方開不盡的數和π統稱為無理數
D.正數、0、負數統稱為有理數
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com