日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.過點D作△BCD的BC邊上的高DE,
易證△ABC≌△BDE,從而得到△BCD的面積為
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.用含a的代數式表示△BCD的面積,并說明理由.
簡單應用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.直接寫出△BCD的面積.(用含a的代數式表示)

【答案】解:初步探究:△BCD的面積為
理由:如圖②,過點D作BC的垂線,與BC的延長線交于點E.
∴∠BED=∠ACB=90°.
∵線段AB繞點B順時針旋轉90°得到線段BE,
∴AB=BD,∠ABD=90°.
∴∠ABC+∠DBE=90°.
∵∠A+∠ABC=90°.
∴∠A=∠DBE.
在△ABC和△BDE中,

∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵SBCD= BCDE
∴SBCD=
簡單應用:如圖③,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,
∴∠AFB=∠E=90°,BF= BC= a.
∴∠FAB+∠ABF=90°.
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD.
∵線段BD是由線段AB旋轉得到的,
∴AB=BD.
在△AFB和△BED中,

∴△AFB≌△BED(AAS),
∴BF=DE= a.
∵SBCD= BCDE,
∴SBCD= aa= a2
∴△BCD的面積為


【解析】初步探究:如圖②,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質就可以得出△ABC≌△BDE,就有DE=BC=a.進而由三角形的面積公式得出結論;
簡單運用:如圖③,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質可以得出BF= BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點F,G分別在ADE的AD,DE邊上,C,B依次為GF延長線上兩點,AB=AD,BAF=CAEB=D

(1)求證:BC=DE;

(2)若B=35°AFB=78°,直接寫出DGB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解答
(1)如圖①,在正方形ABCD中,△AEF的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數.

(2)如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點M,N是BD邊上的任意兩點,且∠MAN=45°,將△ABM繞點A逆時針旋轉90°至△ADH位置,連接NH,試判斷MN,ND,DH之間的數量關系,并說明理由.

(3)在圖①中,連接BD分別交AE,AF于點M,N,若EG=4,GF=6,BM=3 ,求AG,MN的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】材料理解:如圖1點P,Q是標準體育場400m跑道上兩點,沿跑道從P到Q既可以逆時針,也可以順時針,我們把沿跑道從點P到點Q的順時針路程與逆時針路程的較小者叫P、Q兩點的最佳環距離.(如圖1,PQ順時針的路程為120m,逆時針的路程為280m,則PQ的最佳環距離為120m).

問題提出:一次校運動800m預決賽中,如圖2有甲、乙兩名運動員他們同時同地從點M處出發,勻速跑步,他們之間的最佳環距離y(m)與乙用的時間x(s)之間的函數關系如圖所示;解決以下問題:

(1)a=_________,乙的速度為___________.

(2)求線段BC的解析式,并寫出自變量的范圍.

(3)若本次運動會是1000m預決賽,甲完成比賽后是否有可能比乙多跑一圈,計算說明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用尺規在一個平行四邊形內作菱形ABCD,下列作法中錯誤的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AC是正方形ABCD的對角線,將△ACD繞著點A順時針旋轉后得到△AC′D′,點D′落在AC上,C′D′交BC于點E,若AB=1,則圖中陰影部分圖形的面積是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數y=x的圖象為直線l

1)觀察與探究

已知點AA′,點BB′分別關于直線l對稱,其位置和坐標如圖所示.請在圖中標出C4﹣1)關于線l的對稱點C′的位置,并寫出C′的坐標_____

2)歸納與發現

觀察以上三組對稱點的坐標,你會發現:

平面直角坐標系中點Pab)關于直線l的對稱點P′的坐標為_____

3)運用與拓展

已知兩點M﹣33)、N﹣4﹣1),試在直線l上作出點Q,使點QMN兩點的距離之和最小,并求出相應的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥ADQ.

(1)求證:△ADC≌△BEA;

(2)若PQ=4,PE=1,求AD的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本久久精品电影 | 成人综合区 | 国产精品一二区 | 激情欧美一区二区三区中文字幕 | 91久久精品www人人做人人爽 | 日本aa级毛片免费观看 | 午夜免费视频 | 黄色影院免费观看 | 一级国产视频 | 绯色av一区二区三区在线观看 | 奇米影视首页 | 国产成人在线视频 | 亚洲v日韩v综合v精品v | 日本不卡一 | 国产一级视频在线播放 | 一区二区三区在线播放 | 国产精品毛片久久久久久久 | 在线观看国产高清视频 | 久久国产精品免费一区二区三区 | 精品久久久久久久久久久久 | 超碰激情 | 日本黄a| 国产青草| 欧美色图一区 | 激情欧美一区二区三区中文字幕 | 伊人爽 | 久久九九国产 | 日日操操 | 成人欧美一区二区三区 | 久久免费视频9 | 精品国产一区二区三区久久影院 | 国产成人免费在线观看 | 国产欧美一区二区 | 成人在线播放网站 | 久久久久毛片 | 国产婷婷久久 | 国产精品免费在线 | 日本不卡一区二区三区在线观看 | 国产区免费视频 | 精品九九 | 日本在线视频观看 |