分析 AC與BD垂直,理由為:由AB=AD,利用等邊對等角得到一對角相等,利用等式性質得到∠BDC=∠DBC,利用等角對等邊得到DC=BC,利用SSS得到三角形ABC與三角形ADC全等,利用全等三角形對應角相等得到∠DAC=∠BAC,再利用三線合一即可得證.
解答 解:AC⊥BD,理由為:
∵AB=AD(已知),
∴∠ADB=∠ABD(等邊對等角),
∵∠ABC=∠ADC(已知),
∴∠ABC-∠ABD=∠ADC-∠ADB(等式性質),即∠BDC=∠DBC,
∴DC=BC(等角對等邊),
在△ABC和△ADC中,
$\left\{\begin{array}{l}{AB=AD}\\{AC=AC}\\{BC=DC}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠DAC=∠BAC(全等三角形的對應角相等),
又∵AB=AD,
∴AC⊥BD(等腰三角形三線合一).
點評 此題考查了全等三角形的判定與性質,等腰三角形的判定與性質,熟練掌握全等三角形的判定與性質是解本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com