m=1或-2解析:
解:(1)兩邊同時乘以x-2得,x-3+x-2=-3,
移項合并同類項得,2x=2,
解得x=1;
檢驗:當x=1時,x-2≠0,x=1是原分式方程的解.
(2)兩邊同時乘以x(x-1)得,
x(x-m)-3(x-1)=x(x-1)*,
①當x=0時原分式方程無解,此時*變為-3(0-1)=0,無意義;
②當x=1時原分式方程無解,此時*變為(1-m)-3(1-1)=(1-1),
解得m=1.
③x(x-m)-3(x-1)=x(x-1)可化為x="3" m+2 ,
當m=-2時,整式方程無解,即原分式方程無解.
故m=1或-2.