日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】已知ABC是邊長為4的等邊三角形,邊AB在射線OM上,且OA6,點(diǎn)D是射線OM上的動點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時,將ACD繞點(diǎn)C逆時針方向旋轉(zhuǎn)60°得到BCE,連接DE

1)如圖1,求證:CDE是等邊三角形.

2)設(shè)ODt

①當(dāng)6t10時,BDE的周長是否存在最小值?若存在,求出BDE周長的最小值;若不存在,請說明理由.

②求t為何值時,DEB是直角三角形(直接寫出結(jié)果即可).

【答案】(1)見解析;(2) ①見解析; t=2或14.

【解析】

1)由旋轉(zhuǎn)的性質(zhì)得到∠DCE=60°DC=EC,即可得到結(jié)論;

2)①當(dāng)6t10時,由旋轉(zhuǎn)的性質(zhì)得到BE=AD,于是得到CDBE=BE+DB+DE=AB+DE=4+DE,根據(jù)等邊三角形的性質(zhì)得到DE=CD,由垂線段最短得到當(dāng)CDAB時,△BDE的周長最小,于是得到結(jié)論;

②存在,當(dāng)點(diǎn)D與點(diǎn)B重合時,DBE不能構(gòu)成三角形;當(dāng)0≤t6時,由旋轉(zhuǎn)的性質(zhì)得到∠ABE=60°,∠BDE60°,求得∠BED=90°,根據(jù)等邊三角形的性質(zhì)得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;當(dāng)6t10時,此時不存在;當(dāng)t10時,由旋轉(zhuǎn)的性質(zhì)得到∠DBE=60°,求得∠BDE60°,于是得到t=14

1)∵將△ACD繞點(diǎn)C逆時針方向旋轉(zhuǎn)60°得到△BCE

∴∠DCE60°DCEC

∴△CDE是等邊三角形;

2)①存在,當(dāng)6t10時,

由旋轉(zhuǎn)的性質(zhì)得,BEAD

CDBEBE+DB+DEAB+DE4+DE

由(1)知,△CDE是等邊三角形,

DECD

CDBECD+4

由垂線段最短可知,當(dāng)CDAB時,△BDE的周長最小,

此時,CD2

∴△BDE的最小周長=CD+42+4

②存在,∵當(dāng)點(diǎn)D與點(diǎn)B重合時,DBE不能構(gòu)成三角形,

∴當(dāng)點(diǎn)D與點(diǎn)B重合時,不符合題意;

當(dāng)0≤t6時,由旋轉(zhuǎn)可知,∠ABE60°,∠BDE60°

∴∠BED90°

由(1)可知,△CDE是等邊三角形,

∴∠DEB60°

∴∠CEB30°

∵∠CEB=∠CDA

∴∠CDA30°

∵∠CAB60°

∴∠ACD=∠ADC30°

DACA4

ODOADA642

t2

當(dāng)6t10時,由∠DBE120°90°

∴此時不存在;

當(dāng)t10時,由旋轉(zhuǎn)的性質(zhì)可知,∠DBE60°

又由(1)知∠CDE60°

∴∠BDE=∠CDE+BDC60°+BDC

而∠BDC

∴∠BDE60°

∴只能∠BDE90°

從而∠BCD30°

BDBC4

OD14

t14

綜上所述:當(dāng)t214時,以DEB為頂點(diǎn)的三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(問題情境)如圖中,,我們可以利用相似證明,這個結(jié)論我們稱之為射影定理,試證明這個定理;

(結(jié)論運(yùn)用)如圖,正方形的邊長為,點(diǎn)是對角線的交點(diǎn),點(diǎn)上,過點(diǎn),垂足為,連接

(1)試?yán)蒙溆岸ɡ碜C明

(2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究:如圖,分別以△ABC的兩邊AB和AC為邊向外作正方形ABMN和正方形ACDE,CN、BE交于點(diǎn)P. 求證:∠ANC = ∠ABE.

應(yīng)用:Q是線段BC的中點(diǎn),連結(jié)PQ. 若BC = 6,則PQ = ___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的網(wǎng)格是正方形網(wǎng)格,線段AB繞點(diǎn)A順時針旋轉(zhuǎn)αα180°)后與⊙O相切,則α的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)D和點(diǎn)B關(guān)于過點(diǎn)A的直線l:y=﹣x﹣對稱.

(1)求A、B兩點(diǎn)的坐標(biāo)及二次函數(shù)解析式;

(2)如圖2,作直線AD,過點(diǎn)BAD的平行線交直線1于點(diǎn)E,若點(diǎn)P是直線AD上的一動點(diǎn),點(diǎn)Q是直線AE上的一動點(diǎn).連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請說明理由:

(3)將二次函數(shù)圖象向右平移個單位,再向上平移3個單位,平移后的二次函數(shù)圖象上存在一點(diǎn)M,其橫坐標(biāo)為3,在y軸上是否存在點(diǎn)F,使得∠MAF=45°?若存在,請求出點(diǎn)F坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,直線DCAB的延長線相交于點(diǎn)P,弦CE平分∠ACB,交AB點(diǎn)F,連接BE

(1)求證:AC平分∠DAB

(2)求證:PCPF

(3)tanABCAB14,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們學(xué)習(xí)過反比例函數(shù),例如,當(dāng)矩形面積一定時,長a是寬b的反比例函數(shù),其函數(shù)關(guān)系式可以寫為s為常數(shù),s≠0).

請你仿照上例另舉一個在日常生活、生產(chǎn)或?qū)W習(xí)中具有反比例函數(shù)關(guān)系的量的實(shí)例,并寫出它的函數(shù)關(guān)系式.

實(shí)例:三角形的面積S一定時,三角形底邊長y是高x的反比例函數(shù);

函數(shù)關(guān)系式:   (s為常數(shù),s≠0).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知AB是⊙O的直徑,BC是⊙O的切線,OC與⊙O相交于點(diǎn)D,連結(jié)AD并延長,與BC相交于點(diǎn)E。

(1)若BC=,CD=1,求⊙O的半徑;

(2)取BE的中點(diǎn)F,連結(jié)DF,求證:DF是⊙O的切線。

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产黄色av | 国产亚洲精品精品国产亚洲综合 | 午夜大片在线观看 | 久久公开视频 | 精品欧美一区二区三区久久久 | 国产一二三区在线观看 | 国产一级特黄视频 | 一区二区三区在线 | 国产精品视频网站 | 日本高清一区 | 毛片视频播放 | 999在线观看精品免费不卡网站 | 美女超碰 | 五月av | 久久久精品久久久久 | 日本精品视频在线观看 | 成人aaa | 成人在线| 欧美一区二区三区成人 | 欧美高清一区二区 | 日本三级欧美三级 | 精品人伦一区二区三区蜜桃视频 | 亚洲精品一区二区三区蜜桃久 | 在线色网站 | 中文字幕国产区 | 综合久久综合久久 | 欧美日韩中文国产一区发布 | 99久久精品国产一区二区成人 | 在线免费看黄色 | 日韩一区二区福利 | 一区二区三区四区免费观看 | 91精品一区 | 欧美一区在线视频 | 欧洲亚洲精品久久久久 | 99久久婷婷国产综合精品电影 | 成人欧美一区二区三区在线观看 | 传媒av在线 | 欧美一区二区三区四区五区 | 中文字幕第七页 | 日韩中文一区二区三区 | 超碰在线看 |