日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內)上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設點P是拋物線(第一象限內)上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標;若不存在,請說明理由.

解:(1)設拋物線的解析式為:y1=a(x-1)2+4,
把A(3,0)代入解析式求得a=-1,
所以y1=-(x-1)2+4=-x2+2x+3,

(2)設直線AB的解析式為:y2=kx+b,
求得B點的坐標為(0,3),
把A(3,0),B(0,3)代入y2=kx+b中,
,
解得:
所以y2=-x+3,

(3)因為C點坐標為(1,4),
所以當x=1時,y1=4,y2=2,
所以CD=4-2=2,

假設存在符合條件的點P,設點P的橫坐標是x,△PAB的鉛垂高為h,
則h=y1-y2=(-x2+2x+3)-(-x+3)=-x2+3x,
由S△PAB=S△CAB,
得:×3×(-x2+2x)=3
化簡得:x2-2x+2=0,
∵b2+4ac=4-8=-4<0,
∴此方程無實數根,
∴不存在這樣的點使S△PAB=S△CAB
分析:(1)已知拋物線的頂點和拋物線上的幾點,即可利用頂點式求解析式;
(2)利用A,B兩點的坐標,由待定系數法求一次函數解析式即可;
(3)根據S△PAB=S△CAB即可得到一個關于點P的橫坐標的方程,即可求出方程根的情況,進而得到不存在符合要求的P點.
點評:此題主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養.要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:
S△ABC=
1
2
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第一象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(3)是否存在拋物線上一點P,使S△PAB=
9
8
S△CAB?若存在,求出P點的坐標;若精英家教網不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內)上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(4)在(2)的條件下,設P點的橫坐標為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關于x的函數關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

精英家教網閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:精英家教網
如圖2,拋物線頂點坐標為點C(-1,-4),交x軸于點A(-3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第三象限內)上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•龍巖)如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為
3
3
;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=
2a
2a
,正方形EFGH的對角線長為
2
a
2
a

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內)上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設點P是拋物線(第一象限內)上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕天堂在线 | 精品欧美一区二区在线观看视频 | 欧美精品1区2区 | 国产精品久久久久久吹潮 | 亚洲天堂免费在线视频 | h片在线免费观看 | 欧美 日韩 国产 在线 | 国产在线a | 天天草综合| 中文字幕一区二区三区不卡 | 国产成在线观看免费视频 | 午夜免费视频 | 日本一区二区精品 | 国产在线一区二区三区在线观看 | 国产精品视频男人的天堂 | 色网站免费视频 | 天堂在线中文 | 久久久久无码国产精品一区 | av大片在线免费观看 | 国产精品高潮呻吟av久久4虎 | 国产精品一区二区三区在线免费观看 | 不卡在线视频 | 国产美女在线精品免费观看网址 | 日韩精品视频在线播放 | 91丨九色丨国产 | 一区二区久久久 | 免费一二二区视频 | 婷婷国产成人精品视频 | 探花在线观看 | 狠狠一区| 亚洲欧美在线综合 | 一级黄色国产 | 国产成人在线免费观看 | 免费午夜电影 | 日韩欧美一区二区三区免费观看 | 久久亚洲视频 | 精品视频在线观看 | 欧美 国产精品 | 99av| 国产精品久久久久久久蜜臀 | 久久蜜桃视频 |