日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD,垂足為E,DA平分∠BDE.
(1)求證:AE是⊙O的切線;
(2)若∠DBC=30°,DE=1cm,求BD的長.

【答案】分析:(1)連接OA,根據角之間的互余關系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切線;
(2)根據圓周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.
解答:(1)證明:連接OA,
∵DA平分∠BDE,
∴∠BDA=∠EDA.
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠EDA,
∴OA∥CE.(3分)
∵AE⊥DE,
∴∠AED=90°.
∴∠OAE=∠DEA=90°.
∴AE⊥OA.
∴AE是⊙O的切線.(5分)

(2)解:∵BD是直徑,
∴∠BCD=∠BAD=90°.
∵∠DBC=30°,∠BDC=60°,
∴∠BDE=120°.(6分)
∵DA平分∠BDE,
∴∠BDA=∠EDA=60°.
∴∠ABD=∠EAD=30°.(8分)
∵在Rt△AED中,∠AED=90°,∠EAD=30°,
∴AD=2DE.
∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,
∴BD=2AD=4DE.
∵DE的長是1cm,
∴BD的長是4cm.(10分)
點評:本題考查常見的幾何題型,包括切線的判定,及線段長度的求法,要求學生掌握常見的解題方法,并能結合圖形選擇簡單的方法解題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久亚洲精品裙底抄底 | 欧美多人在线 | 精品一区二区三区视频 | www国产亚洲| 综合网视频 | 日韩 国产 在线 | 国产精品自产拍在线观看 | 亚洲男人天堂网 | 久久综合一区二区三区 | 久久99精品久久久久久久青青日本 | 成人一区av偷拍 | 九九在线视频 | 精品久久国产 | 成人一级片视频 | 欧洲精品一区 | 日本亚洲欧美 | 国产三级日本三级美三级 | 绯色av一区二区三区在线观看 | 国产精品久久久久久久久久东京 | 国产一区二区三区视频在线观看 | 日韩中文在线 | 黑人巨大精品欧美一区二区一视频 | 久久国产精品一区二区三区 | 久久99久久久久 | 欧美日韩中文 | 国产精品久久久久久久久久久久久久 | 在线免费看黄色av | 一区免费看 | 婷婷综合五月 | 国产福利在线观看 | 亚洲精品免费观看 | 亚洲精选免费视频 | 91国高清视频 | 国产精品一区二区久久精品爱微奶 | 不卡久久 | 三级在线观看 | 一本色道久久综合亚洲精品不 | 日本一区二区在线播放 | 天天摸夜夜操 | 国产一区二区电影 | 免费观看一级特黄欧美大片 |