日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

以△ABC的三個頂點為圓心,以半徑為0.5cm作⊙A、⊙B、⊙C,且⊙A、⊙B、⊙C兩兩不相交,則⊙A、⊙B、⊙C被△ABC的三邊所截得的三個扇形的積和為

[  ]

A.
B.
C.
D.
答案:B
解析:

所截得的三個扇形圓心角的和為180°.


練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2012•青島)問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點和它內部的1個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
在探究一的基礎上,我們可看作在圖①△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種情況:
一種情況,點Q在圖①分割成的某個小三角形內部.不妨假設點Q在△PAC內部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨假設點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點和它內部的3個點P、Q、R,共6個點為頂點可把△ABC分割成
7
7
個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個頂點可把△ABC分割成
(2m+1)
(2m+1)
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個頂點可把四邊形分割成
(2m+2)
(2m+2)
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個頂點可把△ABC分割成
(2m+n-2)
(2m+n-2)
個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內部的2012個點,共2020個頂點,可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手,通過觀察、分析,最后歸納出結論:
探究一:以△ABC的三個頂點和它內部的一個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖(1),顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?

在探究一的基礎上,我們可看作在圖(1)△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種情況:一種情況,點Q在圖(1)分割成的某個小三角形內部,不妨假設點Q在△PAC內部,如圖(2);另一種情況,點Q在圖(1)分割成的小三角形的某條公共邊上,不妨假設點Q在P上,如圖(3);顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點和它內部的3個點,共6個點為頂點可把△ABC分割成
7
7
個互不重疊的小三角形.
探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個點為頂點可把△ABC分割成
3+2(m-1)或2m+1
3+2(m-1)或2m+1
個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個點為頂點,可把四邊形分割成
4+2(m-1)或2m+2
4+2(m-1)或2m+2
個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個點為頂點,可把△ABC分割成
n+2(m-1)或2m+n-
n+2(m-1)或2m+n-
個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內部的m個點,共(m+8)個點為頂點,可把八邊形分割成2013個互不重疊的小三角形嗎?若行,求出m的值;若不行,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業升學考試(山東青島卷)數學(帶解析) 題型:解答題

問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂
點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:
探究一:以△ABC的3個頂點和它內部的1個點P,共4個點為頂點,可把△ABC分割成多少個互
不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的3個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個
互不重疊的小三角形?
在探究一的基礎上,我們可看作在圖①△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種
情況:
一種情況,點Q在圖①分割成的某個小三角形內部.不妨設點Q在△PAC的內部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨設點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.
探究三:以△ABC的三個頂點和它內部的3個點P、Q、R,共6個點為頂點,可把△ABC分割成     
互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個點為頂點,可把△ABC分割成       
互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個點為頂點,可把四邊形分割成
       個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成
       個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內部的2012個點,共2020個頂點,可把八邊形分割成多少個互
不重疊的小三角形?(要求列式計算)

查看答案和解析>>

科目:初中數學 來源:2012年初中畢業升學考試(山東青島卷)數學(解析版) 題型:解答題

問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂

點,可把原n邊形分割成多少個互不重疊的小三角形?

問題探究:為了解決上面的問題,我們將采取一般問題特殊化的策略,先從簡單和具體的情形入手:

探究一:以△ABC的3個頂點和它內部的1個點P,共4個點為頂點,可把△ABC分割成多少個互

不重疊的小三角形?如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.

探究二:以△ABC的3個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個

互不重疊的小三角形?

在探究一的基礎上,我們可看作在圖①△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種

情況:

一種情況,點Q在圖①分割成的某個小三角形內部.不妨設點Q在△PAC的內部,如圖②;

另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨設點Q在PA上,如圖③.

顯然,不管哪種情況,都可把△ABC分割成5個互不重疊的小三角形.

探究三:以△ABC的三個頂點和它內部的3個點P、Q、R,共6個點為頂點,可把△ABC分割成     

互不重疊的小三角形,并在圖④中畫出一種分割示意圖.

探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個點為頂點,可把△ABC分割成       

互不重疊的小三角形.

探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個點為頂點,可把四邊形分割成

        個互不重疊的小三角形.

問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成

        個互不重疊的小三角形.

實際應用:以八邊形的8個頂點和它內部的2012個點,共2020個頂點,可把八邊形分割成多少個互

不重疊的小三角形?(要求列式計算)

 

查看答案和解析>>

科目:初中數學 來源:2012年山東省青島市中考數學試卷(解析版) 題型:解答題

問題提出:以n邊形的n個頂點和它內部的m個點,共(m+n)個點作為頂點,可把原n邊形分割成多少個互不重疊的小三角形?
問題探究:為了解決上面的問題,我們將采取一般問題特殊性的策略,先從簡單和具體的情形入手:
探究一:以△ABC的三個頂點和它內部的1個點P,共4個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
如圖①,顯然,此時可把△ABC分割成3個互不重疊的小三角形.
探究二:以△ABC的三個頂點和它內部的2個點P、Q,共5個點為頂點,可把△ABC分割成多少個互不重疊的小三角形?
在探究一的基礎上,我們可看作在圖①△ABC的內部,再添加1個點Q,那么點Q的位置會有兩種情況:
一種情況,點Q在圖①分割成的某個小三角形內部.不妨假設點Q在△PAC內部,如圖②;
另一種情況,點Q在圖①分割成的小三角形的某條公共邊上.不妨假設點Q在PA上,如圖③.
顯然,不管哪種情況,都可把△ABC分割成5個不重疊的小三角形.
探究三:以△ABC的三個頂點和它內部的3個點P、Q、R,共6個點為頂點可把△ABC分割成______個互不重疊的小三角形,并在圖④中畫出一種分割示意圖.
探究四:以△ABC的三個頂點和它內部的m個點,共(m+3)個頂點可把△ABC分割成______個互不重疊的小三角形.
探究拓展:以四邊形的4個頂點和它內部的m個點,共(m+4)個頂點可把四邊形分割成______個互不重疊的小三角形.
問題解決:以n邊形的n個頂點和它內部的m個點,共(m+n)個頂點可把△ABC分割成______個互不重疊的小三角形.
實際應用:以八邊形的8個頂點和它內部的2012個點,共2020個頂點,可把八邊形分割成多少個互不重疊的小三角形?(要求列式計算)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 高清国产午夜精品久久久久久 | 男女靠逼免费视频 | 午夜影院色 | 国产精品久久久久久福利一牛影视 | 日韩色综合 | 日韩成人在线观看 | 国产福利91精品一区二区三区 | 黄色免费网站在线看 | 久热精品国产 | 日韩手机在线 | 日韩一区二区三区视频在线观看 | 欧美一二三区在线观看 | 综合中文字幕 | 日韩在线不卡 | 日本综合久久 | 先锋av资源在线 | 国产精品免费在线 | 国产在线精品视频 | 国产情侣自拍啪啪 | 国产免费无遮挡 | 国产成人精品国内自产拍免费看 | 午夜小视频免费 | 久久精品一区二区三区四区 | 99精品国产99久久久久久97 | 国产一区二区影院 | 亚洲第一中文字幕 | 国产免费成人在线视频 | a级毛片基地 | 污视频网站入口 | 国产精品污www一区二区三区 | 日韩在线播放一区 | 特级做a爰片毛片免费看108 | 国产黄色在线免费看 | 久久99精品国产麻豆不卡 | 国产日韩欧美精品一区 | 激情视频一区二区三区 | 日韩欧美一区二区三区免费观看 | 久久日本视频 | 亚洲黄色精品 | 探花 在线| 狠狠一区 |