【題目】(閱讀材料)平面直角坐標系中,點P(x,y)的橫坐標x的絕對值表示為|x|,縱坐標y的絕對值表示為|y|,我們把點P(x,y)的橫坐標與縱坐標的絕對值之和叫做點P(x,y)的勾股值,記為[P],即[P]=|x|+|y|(其中的“+”是四則運算中的加法),例如點P(1,2)的勾股值[P]=|1|+|2|=3.
(1)求點A(,
)的勾股值[A],
(2)若將點A向上平移3個單位,再向左平移2個單位后得到點B,請直接寫出點B的坐標,并求出點B的勾股值 [B];
(3)若點M在x軸的上方,其橫,縱坐標均為整數,且[M]=3,請直接寫出點M的坐標.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是邊BC上一點,DE⊥AB,DF⊥AC,垂足分別是E,F,△AEF∽△ABC.
(1)求證:△AED≌△AFD;
(2)若BC=2AD,求證:四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點B逆時針旋轉90°得到△DBE,DE的延長線恰好經過AC的中點F,連接AD,CE.
(1)求證:AE=CE;
(2)若BC=,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BC與x軸平行,A,B兩點的縱坐標分別為3,1,反比例函數y= 的圖象經過A,B兩點,則菱形ABCD的面積為( )
A.2
B.4
C.2
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD,CF平分∠ECD,HC⊥CF交直線AB于H,AG平分∠HAE交HC于G,EJ∥AG交CF于J,∠AEC=80°,則下列結論正確的有( )個.
①∠BAE+∠ECD=80°;②CG平分∠ICE;③∠AGC=140°;④∠EJC﹣∠AGH=90°.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知平面直角坐標系中,A點坐標為(﹣4,4),B(﹣4,0)C(1,3),解答下列各題:
(1)按題中所給坐標在圖中畫出△ABC并直接寫出△ABC的面積;
(2)畫出△ABC先向右平移5個單位長度再向下平移3個單位長度的△A'B'C',并直接寫出A',B′,C'的坐標;
(3)直接寫出△ABC按照(2)問要求平移到△A'B'C'的過程中,△ABC所掃過的圖形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在四邊形中,
,
、
分別是
、
的中點,連接
并延長,分別與
、
的延長線交于點
、
,證明:
.
請將證明的過程填寫完整:
證明:連接,取
的中點
,連接
、
.
是
的中點,
是
的中點,
________,
_______,同理:
_______,
_______,
,
,
又,
,
,
.
(2)運用上題方法解決下列問題:
問題一:如圖2,在四邊形中,
與
相交于點
,
,
、
分別是
、
的中點,連接
,分別交
、
于點
、
,請判斷
的形狀,并說明理由;
問題二:如圖3,在鈍角中,
,
點在
上,
、
分別是
、
的中點,連接
并延長,與
的延長線交于點
,連接
,若
,
是直角三角形且
,求證:
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,點 D 是邊 BC 上的點(與 B、C 兩點不重合),過點 D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點,下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com