【題目】如圖①,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為直角邊且在AD的上方作等腰直角三角形ADF,連接CF.
(1)若AB=AC,∠BAC=90°
①當點D在線段BC上時(與點B不重合),試探究CF與BD的數量關系和位置關系,并說明理由.
②當點D在線段BC的延長線上時,①中的結論是否仍然成立,請在圖②中畫出相應圖形并直接寫出你的猜想.
(2)如圖③,若AB≠AC,∠BAC≠90°,∠BCA=45°,點D在線段BC上運動,試探究CF與BC的位置關系,并說明理由.
【答案】(1)①CF=BD,CF⊥BD,理由詳見解析;②成立,理由詳見解析;(2)CF⊥BD,理由詳見解析.
【解析】
(1)①根據同角的余角相等求出∠CAF=∠BAD,然后利用“邊角邊“證明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后與①的思路相同求解即可;
(2)過點A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根據等腰直角三角形的性質可得AC=AE,∠AED=45°,再根據同角的余角相等求出∠CAF=∠EAD,然后利用“邊角邊“證明△ACF和△AED全等,根據全等三角形對應角相等可得∠ACF=∠AED,然后求出∠BCF=90°,從而得到CF⊥BD.
解:(1)①CF=BD,CF⊥BD,理由如下:
∵∠BAC=90°,△ADF是等腰直角三角形,
∴∠CAF+∠CAD=90°,∠BAD+∠CAD=90°,
∴∠CAF=∠BAD,
在△ACF和△ABD中, ,
∴△ACF≌△ABD(SAS),
∴CF=BD,∠ACF=∠ABD=45°,
∵∠ACB=45°,
∴∠FCB=90°,
∴CF⊥BD;
②成立,理由如下:如圖2:
∵∠CAB=∠DAF=90°,
∴∠CAB+∠CAD=∠DAF+∠CAD,
即∠CAF=∠BAD,
在△ACF和△ABD中, ,
∴△ACF≌△ABD(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;
(2)如圖3,
過點A作AE⊥AC交BC于E,
∵∠BCA=45°,
∴△ACE是等腰直角三角形,
∴AC=AE,∠AED=45°,
∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,
∴∠CAF=∠EAD,
在△ACF和△AED中, ,
∴△ACF≌△AED(SAS),
∴∠ACF=∠AED=45°,
∴∠BCF=∠ACF+∠BCA=45°+45°=90°,
∴CF⊥BD.
科目:初中數學 來源: 題型:
【題目】如圖,點D,E是等邊三角形ABC的邊BC,AC上的點,且CD=AE,AD交BE于點P,BQ⊥AD于點Q,已知PE=2,PQ=6,則AD等于( )
A.10B.12C.14D.16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】暑假到了,即將迎來手機市場的銷售旺季.某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
甲 | 乙 | |
進價(元/部) | 4000 | 2500 |
售價(元/部) | 4300 | 3000 |
該商場計劃投入15.5萬元資金,全部用于購進兩種手機若干部,期望全部銷售后可獲毛利潤不低于2萬元.(毛利潤=(售價﹣進價)×銷售量)
(1)若商場要想盡可能多的購進甲種手機,應該安排怎樣的進貨方案購進甲乙兩種手機?
(2)通過市場調研,該商場決定在甲種手機購進最多的方案上,減少甲種手機的購進數量,增加乙種手機的購進數量.已知乙種手機增加的數量是甲種手機減少的數量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提升學生的閱讀能力,開拓學生的視野,學校開展了為期一個月的“陽光讀書”活動.為了解同學們的閱讀情況,校學生會隨機抽取了一部分學生進行調查,并將統計數據制成如下統計圖,其中A﹣﹣散文類,B﹣﹣傳記類,C﹣﹣小說類,D﹣﹣期刊類,E﹣﹣其他,請你根據統計圖解答以下問題:
(1)扇形統計圖中D部分所對應扇形的圓心角為 度;請補全條形統計圖
(2)現從A中抽選1名女同學;再從C中抽選3名同學,其中恰好有1名男同學.現準備從抽選出來的這4名同學中隨機選出2名同學代表學校參加比賽,請利用畫樹狀圖或列表的方法求出選出的同學都是女同學的概率
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四幅圖象分別表示變量之間的關系,請按圖象的順序,將下面的四種情境與之對應排序.正確的順序是( )
①籃球運動員投籃時,投出去的籃球的高度與時間的關系
②去超市購買同一單價的水果,所付費用與水果數量的關系
③李老師使用的是一種含月租的手機計費方式,則他每月所付話費與通話時間的關系
④周末,小明從家到圖書館,看了一段時間書后,按原速度原路返回,小明離家的距離與時間的關系
A. ①②③④ B. ①③④② C. ①③②④ D. ①④②③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足,下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正確的是________(填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC的邊AB,AC的外側分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點B,請求出△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小柔要榨果汁,她有蘋果、芭樂、柳丁三種水果,且其顆數比為9:7:6,小柔榨完果汁后,蘋果、芭樂、柳丁的顆數比變為6:3:4,已知小柔榨果汁時沒有使用柳丁,關于她榨果汁時另外兩種水果的使用情形,下列敘述何者正確?( )
A. 只使用蘋果
B. 只使用芭樂
C. 使用蘋果及芭樂,且使用的蘋果顆數比使用的芭樂顆數多
D. 使用蘋果及芭樂,且使用的芭樂顆數比使用的蘋果顆數多
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com