【題目】如圖,在Rt△ABC中,∠B=90°,AB=20cm,BC=15cm,動點P從點A出發,以每秒4cm的速度沿AB方向運動,到達點B時停止運動.過點P作AB的垂線交斜邊AC于點E,將△APE繞點P順時針旋轉90°得到△DPF.設點P在邊AB上運動的時間為t(秒).
(1)當點F與點B重合時,求t的值;
(2)當△DPF與△ABC重疊部分的圖形為四邊形時,設此四邊形的面積為S,求S與t的函數關系式;
(3)若點M是DF的中點,當點M恰好在Rt△ABC的內角角平分線上時,求t的值.
【答案】(1);(2)S=
(0<t≤
);(3)
或
.
【解析】
(1)由條件可得AP=4t,易證,根據相似三角形的性質可得PE=3t,由旋轉的性質可得PE= PF,然后根據PF+AP=AB建立方程,就可求出t的值.
(2)先用t的代數式表示出DE長及的面積,然后證明
,再求出
的面積,然后運用相似三角形性質(相似三角形的面積比等于相似比的平方)將
的面積用t的代數式表示,就可得到S與t的函數關系式.
(3)設DF交AC于點G,過點M作MH⊥AB于點H,過點M作MN⊥BC于點N,如圖3,先分別用t的代數式表示出MG、MH、MN的長,然后運用角平分線的性質建立等量關系,就可求出t的值.
(1) ∵△APE繞點P順時針旋轉90°得到△DPF,
∴∠D=∠A,∠DFP=∠AEP,∠DPB=∠APE=90°,AP=DP,EP=FP,AE=DF,
∵點F與點B重合,
∴PB=PF,
∴EP=BP,
∵AB=20,AP=4t,
∴EP=BP=20-4t,
∵∠APE=∠ABC=90°,
∴PE∥BC,
∴,
∴,
∵BC=15,AP=4t,AB=20,
∴PE=3t,
∵EP=BP=20-4t,
∴3t=10-4t,
解得:t=,
∴t的值為(秒);
(2)當與
重疊部分的圖形為四邊形時,如下圖:
此時0<t≤,
∵PE∥BC,
∴∠DEG=∠C,
又∵∠D=∠A,
∴,
∴,
∵∠B=90°,AB=20,BC=15,
∴AC=25, =
=150,
∵DE=DP-EP=AP-EP=4t-3t=t,
∴,
∴=
,
∵=
=
=
,
∴S=-
=
-
=
,
∴S與t的函數關系式為:S=(0<t≤
).
(3)設DF交AC于點G,過點M做MH⊥AB于點H,過點M作MN⊥BC于點N,如下圖:
∵,
∴∠DGE=∠B=90°, ,
∵DE=t,AB=20,AC=25,
∴DG=,
∵∠APE=90°,AP=4t,PE=3t,
∴AE=5t,
∴DF=AE=5t,
∵點M是DF的中點,
∴DM=FM=DF=
,
∴MG=DM-DG==
,
∵∠MHF=∠DPF=90°,
∴MH∥DP,
∴,
∴,
∴MH=DP=2t,FH=
FP=
EP=
,
∴HB=AB-AP-PH=20-4t-=20-
,
∵∠MHB=∠B=∠MNB=90°,
∴四邊形MNBH為矩形,
∴MN=HB=20-,
①當點M在∠A的角平分線上時,
∵MG⊥AC,MH⊥AB,
∴MG=MH,
∴=2t,
解得:t=0(舍去).
②當點M在∠B的角平分線上時,
∵MN⊥BC,MH⊥AB,
∴MH=MN,
∴2t=20- ,
解得:t= ,
③當點M在∠C的角平分線上時,
∵MG⊥AC,MN⊥BC,
∴MG=MN,
∴=20-
,
解得:t= ,
綜上所述,當點M恰好在的內角角平分線上時,t的值為
(秒)或
(秒).
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過兩點A(﹣3,0),B(0,3),且其對稱軸為直線x=﹣1.
(1)求此拋物線的解析式;
(2)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求△PAB的面積的最大值,并求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線與
軸只有一個公共點
,且與
軸交于點
(1)試判斷該拋物線的開口方向,說明理由;
(2)若,
軸交該拋物線于點
,且
是直角三角形,求拋物線的解析式;
(3)若直線(
)與該拋物線有兩個交點,且與
軸和
軸分別交于點
,記
的面積為
,求
的取值范圍
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了豐富校園文化生活,提高學生的綜合素質,促進中學生全面發展,學校開展了多種社團活動.小明喜歡的社團有:合唱社團、足球社團、書法社團、科技社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機抽取一張卡片是足球社團B的概率是 .
(2)小明先從中隨機抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機抽取一張卡片,記錄下卡片上的字母.請你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團D的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】婁底市某樓盤準備以每平方米5000元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望.為了加快資金周轉,房地產開發商對價格經過兩次下調后,決定以每平方米4050元的均價開盤銷售.
(1)求平均每次下調的百分率;
(2)某人準備以開盤均價購買一套150平方米的房子.開發商還給予以下兩種優惠方案以供選擇:①打9.8折銷售;②不打折,送三年物業管理費.物業管理費為每平方米每月1.5元.請問哪種方案更優惠?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=kx+3與
軸、
軸分別相交于點A、B,并與拋物線
的對稱軸交于點
,拋物線的頂點是點
.
(1)求k和b的值;
(2)點G是軸上一點,且以點
、C、
為頂點的三角形與△
相似,求點G的坐標;
(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的
與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設
.
(1)求證:;
(2)如果點Q在線段AD上(與點A、D不重合),設的面積為y,求y關于x的函數關系式,并寫出定義域;
(3)如果與
相似,求BP的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com