分別以▱ABCD(∠CDA≠90°)的三邊AB,CD,DA為斜邊作等腰直角三角形,△ABE,△CDG,△ADF.
(1)如圖1,當三個等腰直角三角形都在該平行四邊形外部時,連接GF,EF.請判斷GF與EF的關系(只寫結論,不需證明);
(2)如圖2,當三個等腰直角三角形都在該平行四邊形內部時,連接GF,EF,(1)中結論還成立嗎?若成立,給出證明;若不成立,說明理由.
解:(1)GF⊥EF,GF=EF。
(2)GF⊥EF,GF=EF成立。理由如下:
∵四邊形ABCD是平行四邊形,∴AB=CD,∠DAB+∠ADC=180°。
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°
∴∠BAE+∠FDA+∠EAF+∠ADF+∠FDC=180°。∴∠EAF+∠CDF=45°。
∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF。
∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS)。
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA。
∴∠GFE=90°。∴GF⊥EF。
【解析】
試題分析:(1)根據等腰直角三角形的性質以及平行四邊形的性質得出∠FDG=∠EAF,進而得出△EAF≌△GDF即可得出答案:
∵四邊形ABCD是平行四邊形,∴AB=CD,∠DAB+∠ADC=180°。
∵△ABE,△CDG,△ADF都是等腰直角三角形,
∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°。
∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,
∠EAF=360°﹣∠BAE﹣∠DAF﹣∠BAD=270°﹣(180°﹣∠CDA)=90°+∠CDA。
∴∠FDG=∠EAF。
∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS)。
∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA。
∴∠GFE=90°。∴GF⊥EF。
(2)根據等腰直角三角形的性質以及平行四邊形的性質得出∠FDG=∠EAF,進而得出△EAF≌△GDF即可得出答案。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com