【題目】下列長度的各組線段中,能構成三角形的是( 。
A. 4,8,4 B. 2,2,5 C. 1,3,1 D. 4,4,6
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標.
(2)將△ABC繞點O順時針旋轉90°,請畫出旋轉后的△A2B2C2,并求點B所經過的路徑長(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD是∠CAB的平分線,DE∥AB,DF∥AC,EF交AD于點O.請問:
(1)DO是∠EDF的平分線嗎?給出結論并說明理由.
(2)若將DO是∠EDF的平分線與AD是∠CAB的平分線,DE∥AB,DF∥AC中的任一條件交換,所得結論正確嗎?若正確,請選擇一個說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】給出下列命題:
① 對角線相等且互相平分的四邊形是矩形;
② 對角線平分一組對角的平行四邊形是菱形;
③ 對角線互相垂直的矩形是正方形;
④ 對角線相等的菱形是正方形;
其中是真命題的有( )個.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)問題:如圖(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,試探究AD、DE、EB滿足的等量關系.
[探究發現]
小聰同學利用圖形變換,將△CAD繞點C逆時針旋轉90°得到△CBH,連接EH,由已知條件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根據“邊角邊”,可證△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之間的等量關系是 .
[實踐運用]
(1)如圖(2),在正方形ABCD中,△AEF的頂點E、F分別在BC、CD邊上,高AG與正方形的邊長相等,求∠EAF的度數;
(2)在(1)條件下,連接BD,分別交AE、AF于點M、N,若BE=2,DF=3,BM=2,運用小聰同學探究的結論,求正方形的邊長及MN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F,AE與BF相交于點O,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)若AE=6,BF=8,CE= ,求ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】體育委員統計了全班同學60秒跳繩的次數,并列出下面的頻數分布表:
次數 | 60≤x<90 | 90≤x<120 | 120≤x<150 | 150≤x<180 | 180≤x<210 |
頻數 | 16 | 25 | 9 | 7 | 3 |
(1)全班有多少同學?
(2)組距是多少?組數是多少?
(3)跳繩次數x在120≤x<180范圍的同學有多少?占全班同學的百分之幾(精確到0.1%)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com