【題目】如圖(1),AB為半圓O的直徑,D為BA的延長線上一點,DC為半圓O的切線,切點為C.
(1)求證:∠ACD=∠B;
(2)如圖(2),∠BDC的平分線分別交AC,BC于點E,F,求∠CEF的度數.
【答案】(1)見解析;(2)45°.
【解析】試題分析:(1)連接OC,根據切線的性質和直徑所對的圓周角是直角得出∠DCO=∠ACB=90°,然后根據等角的余角相等即可得出結論;
(2)根據三角形的外角的性質證明∠CEF=∠CFE即可求解.
試題解析:
(1)證明:如圖1中,連接OC.
∵OA=OC,∴∠1=∠2,
∵CD是⊙O切線,∴OC⊥CD,
∴∠DCO=90°,∴∠3+∠2=90°,
∵AB是直徑,∴∠1+∠B=90°,
∴∠3=∠B.
(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,
∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,
∵∠ECF=90°,
∴∠CEF=∠CFE=45°.
科目:初中數學 來源: 題型:
【題目】下列語句中正確的是( )
A.長度相等的兩條弧是等弧
B.平分弦的直徑垂直于弦
C.相等的圓心角所對的弧相等
D.經過圓心的每一條直線都是圓的對稱軸
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若A為一數,且A=25×76×114 , 則下列選項中所表示的數,何者是A的因子?( )
A.24×5
B.77×113
C.24×74×114
D.26×76×116
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為,所以
就有最小值1,即
,只有當
時,才能得到這個式子的最小值1.同樣,因為
,所以
有最大值1,即
,只有在
時,才能得到這個式子的最大值1.
(1)當=_______時,代數式3(x+3)2+4有最_______(填寫大或小)值為___________.
(2)當=_______時,代數式-2x2+4x+3有最_______(填寫大或小)值為__________.
(3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com