【題目】如圖,在Rt△ABC中,∠BAC=90°
(1)先作∠ACB的平分線交AB邊于點P,再以點P為圓心,PA長為半徑作⊙P;(要求:尺規作圖,保留作圖痕跡,不寫作法)
(2)請你判斷(1)中BC與⊙P的位置關系,并證明你的結論.
【答案】
(1)解:如圖所示,⊙P為所求的圓
(2)證明:BC與⊙P相切,理由為:
過P作PD⊥BC,交BC于點P,
∵CP為∠ACB的平分線,且PA⊥AC,PD⊥CB,
∴PD=PA,
∵PA為⊙P的半徑.
∴BC與⊙P相切
【解析】(1)根據題意作出圖形,如圖所示;(2)BC與⊙P相切,理由為:過P作PD⊥BC,交BC于點P,利用角平分線定理得到PD=PA,而PA為圓P的半徑,即可得證.此題考查了直線與圓的位置關系,以及作圖﹣復雜作圖,證明切線的方法有兩種:一種是連接證明垂直;一種是作垂線,證明垂線段等于半徑.
【考點精析】通過靈活運用直線與圓的三種位置關系,掌握直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點即可以解答此題.
科目:初中數學 來源: 題型:
【題目】多多班長統計去年1~8月“書香校園”活動中全班同學的課外閱讀數量(單位:本),繪制了如圖折線統計圖,下列說法正確的是( )
A.極差是47
B.眾數是42
C.中位數是58
D.每月閱讀數量超過40的有4個月
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某小區某月家庭用水量的情況,從該小區隨機抽取部分家庭進行調查,以下是根據調查數據繪制的統計圖表的一部分
分組 | 家庭用水量x/噸 | 家庭數/戶 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>4.0 | 3 |
根據以上信息,解答下列問題
(1)家庭用水量在4.0<x≤6.5范圍內的家庭有戶,在6.5<x≤9.0范圍內的家庭數占被調查家庭數的百分比是%;
(2)本次調查的家庭數為戶,家庭用水量在9.0<x≤11.5范圍內的家庭數占被調查家庭數的百分比是%;
(3)家庭用水量的中位數落在組;
(4)若該小區共有200戶家庭,請估計該月用水量不超過9.0噸的家庭數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】關于拋物線y=x2﹣2x+1,下列說法錯誤的是( 。
A.開口向上
B.與x軸有兩個重合的交點
C.對稱軸是直線x=1
D.當x>1時,y隨x的增大而減小
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D為AB的中點,EF為△ACD的中位線,四邊形EFGH為△ACD的內接矩形(矩形的四個頂點均在△ACD的邊上).
(1)計算矩形EFGH的面積;
(2)將矩形EFGH沿AB向右平移,F落在BC上時停止移動.在平移過程中,當矩形與△CBD重疊部分的面積為 時,求矩形平移的距離;
(3)如圖③,將(2)中矩形平移停止時所得的矩形記為矩形E1F1G1H1 , 將矩形E1F1G1H1繞G1點按順時針方向旋轉,當H1落在CD上時停止轉動,旋轉后的矩形記為矩形E2F2G1H2 , 設旋轉角為α,求cosα的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】任意一條線段EF,其垂直平分線的尺規作圖痕跡如圖所示.若連接EH,HF,FG,GE,則下列結論中,不一定正確的是( 。
A.△EGH為等腰三角形
B.△EGF為等邊三角形
C.四邊形EGFH為菱形
D.△EHF為等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC內部或BC邊上的一個動點(與B、C不重合),以D為頂點作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度數;
(2)若兩三角形重疊部分的形狀始終是四邊形AGDH.
①如圖1,連接GH、AD,當GH⊥AD時,請判斷四邊形AGDH的形狀,并證明;
②當四邊形AGDH的面積最大時,過A作AP⊥EF于P,且AP=AD,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質地都相同的乒乓球,球面上分別標有數字1,﹣2,3,﹣4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有種可能的結果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數字之積為偶數的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com