日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】已知,在梯形ABCD中,ADBC,A=90°,AD=2,AB=4,BC=5,在射線BC任取一點M,聯結DM,作∠MDN=BDC,MDN的另一邊DN交直線BC于點N(點N在點M的左側).

(1)當BM的長為10時,求證:BDDM;

(2)如圖(1),當點N在線段BC上時,設BN=x,BM=y,求y關于x的函數關系式,并寫出它的定義域;

(3)如果△DMN是等腰三角形,求BN的長.

【答案】(1)見解析;(2)y=,0x4;(3)BN=012﹣4.

【解析】試題分析:

(1)如圖1,過點DDGBCG,由已知易得四邊形ABGD是矩形,則BG=AD=2,DG=AB=4,BC=5可得CG=3,由勾股定理可得CD=5,結合BM=10可得CM=BM-BC=5=BC=CD,由此可得△BDM是直角三角形,從而可得BD⊥DM;

(2)如圖1,由(1)中CD==5=BC可得∠BDC=DBC結合∠MDN=BDC即可得到∠DBC=MDN,再結合∠BMD=DMN可得△MDN∽△MBD,從而可得DM2=BM×MN結合DM2=DG2+MG2=16+(y﹣2)2,MN=BM﹣BN=y﹣x,可得16+(y﹣2)2=y(y﹣x),整理可得y=,結合點N在線段BC上可得x的取值范圍是:;

(3)分:Ⅰ、DN=DM;II、DM=MN;III、MN=DN三種情況結合已知條件和前面所得結論進行分析計算即可.

試題解析

(1)如圖1,過點DDGBCG,

∴∠BGD=90°,

∵∠A=90°,梯形ABCD中,AD∥BC,

∴∠ABC=90°,

∴四邊形ABGD是矩形,BG=AD=2,DG=AB=4,

BC=5,

CG=BC﹣BG=3,

RtCDG中,根據勾股定理得,CD=5,

BM=10,

CM=BM﹣BC=5=BC=CD,

∴△BDM是直角三角形,

BDDM;

(2)由(1)知,CD=5=BC,

∴∠BDC=DBC,

∵∠MDN=BDC,

∴∠DBC=MDN,

∵∠BMD=DMN,

∴△MDN∽△MBD,

,

DM2=BM×MN

RtDMG中,根據勾股定理得,DM2=DG2+MG2=16+(y﹣2)2

MN=BM﹣BN=y﹣x,

16+(y﹣2)2=y(y﹣x),

y=,

又∵點N在線段BC上,

0≤x<4;

(3)∵△DMN是等腰三角形,

、當DN=DM時,如圖1,NG=MG,

NG=2﹣x,MG=y﹣2,

2﹣x=y﹣2,

x+y=4,

由(2)知,y=,

y(4﹣x)=20

聯立①②,解得x=﹣﹣4(舍)或x=﹣4,

即:BN=-4,

、當DM=MN時,

∴∠MDN=DNM,

∵∠CBD=MDN,

∴∠CBD=DNM,

∴點N與點B重合,

BN=0,

、當MN=DN

∴∠MDN=DMN,

∵∠DBC=MDN,

∴∠DBC=DMN,

DM=BD,

RtABD中,根據勾股定理得,BD2=AD2+AB2=20,

DM2=16+(BM﹣2)2,

20=16+(BM﹣2)2,

BM=0(舍去)或BM=4,

∴如圖2,

M在線段BC上,

同(2)的方法得,16+(BM﹣2)2=BM(BM﹣BN),

MN=BN+BM

聯立③④解得,BN=1.

即:BN=01﹣4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AB=5,AC=3,點DBC上一動點,連接AD,將ACD沿AD折疊,點C落在點E處,連接DEAB于點F,當DEB是直角三角形時,DF的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知在平面直角坐標系xOy中(如圖),已知拋物線y=﹣x2+bx+c經過點A(2,2),對稱軸是直線x=1,頂點為B.

(1)求這條拋物線的表達式和點B的坐標;

(2)點M在對稱軸上,且位于頂點上方,設它的縱坐標為m,聯結AM,用含m的代數式表示AMB的余切值;

(3)將該拋物線向上或向下平移,使得新拋物線的頂點C在x軸上.原拋物線上一點P平移后的對應點為點Q,如果OP=OQ,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在△ABC中,AB=AC,點D、E、F分別在邊BC、AB、AC上,且∠ADE=B,ADF=C,線段EF交線段AD于點G.

(1)求證:AE=AF;

(2)若,求證:四邊形EBDF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AT是經過點A的切線,弦CD垂直ABP點,Q為線段CP的中點,連接BQ并延長交切線ATT點,連接OT

(1)求證:BCOT

(2)若⊙O直徑為10,CD=8,求AT的長;

(3)延長TO交直線CDR,若⊙O直徑為10,CD=8,求TR的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy,已知直線AByx+4x軸于點Ay軸于點B.直線CDyx﹣1與直線AB相交于點M,x軸于點C,y軸于點D

(1)直接寫出點B和點D的坐標

(2)若點P是射線MD上的一個動點,設點P的橫坐標是x,△PBM的面積是S,Sx之間的函數關系;

(3)當S=20平面直角坐標系內是否存在點E,使以點B、E、PM為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標;若不存在說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解方程

12(3x+4)-5(x+1)=4

2)6-3(x+ )=

3

4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某農戶種植一種經濟作物,總用水量y(米3)與種植時間x(天)之間的函數關系式圖

(1)第20天的總用水量為多少米3?

(2)當x≥20時,求y與x之間的函數關系式;

(3)種植時間為多少天時,總用水量達到7000米3

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本色综合 | 精品久久久久久国产 | 夜夜精品视频 | 日韩精品毛片 | 日本一二三区视频 | 国产麻豆乱码精品一区二区三区 | 亚洲蜜桃精久久久久久久 | 国产婷婷色一区二区三区 | 超碰香蕉 | 亚洲精品视频免费 | 日韩av手机在线免费观看 | 九九热视频在线 | 精品国产一区二区三区成人影院 | 一区二区欧美视频 | 成人水多啪啪片 | 国产欧美日韩精品在线 | 国产精品久久久久久久久久东京 | 青青草精品 | 亚洲成人免费视频在线观看 | 国产精品欧美久久久久一区二区 | 国产亚洲精品成人av久久影院 | 国内精品久久久久久久97牛牛 | 天天干夜夜爽 | ririsao久久精品一区 | 国产中文字幕在线观看 | 99久久久久国产精品免费 | 亚洲综合在线视频 | 亚洲欧美国产精品久久久久 | 97在线播放 | 欧美a v在线 | 日韩精品一区二区三区 | 欧美男人天堂 | 久久免费视频网 | 精品国产一区二区三区小蝌蚪 | 国产精品久久久久久久久福交 | 欧洲成人午夜免费大片 | 日韩在线播放欧美字幕 | 欲色av| 伊人精品久久久 | 日韩一区中文字幕 | 中文字幕一区二区三区乱码图片 |