日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

【答案】分析:(1)若∠BPC=90°,則∠BPA和∠PCD同為∠DPC的余角,故∠BPA=∠PCD,而∠A、∠D都是直角,由此可證得:△ABP∽△DPC.
(2)由于AD∥BC,則∠PBC=∠APB,那么只需求出∠APB的正切值即可,關鍵是求AP的長;可設AP為x,用x可表示出DP的長,根據(1)所得相似三角形的比例線段,即可求得x即AP的值,進而可得到∠APB的正切值,由此得解.
(3)易得AB、AD的長,即可得到矩形的長和寬的比例關系,若設ME=x,則MN=2ME=2x,可過P作BC的垂線,設垂足為H,交MN于G;那么PG=6-x,易證得△PMN∽△PBC,根據相似三角形的對應邊成比例,即可求得x的值,進而可求出MN的長.(當ME=2MN時,方法同上).
解答:(1)證明:∵∠BPC=90°,∠D=90°,
∴∠BPA+∠DPC=∠PCD+∠DPC=90°,
∴∠APB=∠PCD;
又∵∠A=∠D=90°,
∴△ABP∽△DPC.

(2)解:設AP=x,則PD=AD-AP=13-x;
由(1)知:△ABP∽△DPC,得:
,即,化簡得:
x2-13x+36=0,解得x=4,x=9;
在Rt△APB中,當AP=4時,tan∠APB==
當AP=9時,tan∠APB===
由于AD∥BC,則∠APB=∠PBC,
故∠PBC的正切值為

(3)解:過P作PH⊥BC于H,交MN于G,則PG⊥MN;
由題意知:AB=6,AD=AP+PD=12,即AD=2AB;
①當MN=2ME時,設ME=x,則MN=2x,PG=6-x;
由于MN∥BC,則△PMN∽△PBC,得:
,即
解得:x=3,故MN=2x=6;
②當ME=2MN時,設MN=m,則ME=2m,PG=6-2m,同①可得:
,即
解得:m=2.4,即MN=2.4;
綜上所述,MN的值為6或2.4.
點評:此題重點考查的是相似三角形的判定和性質,涉及到的知識點有:矩形的性質、銳角三角函數等知識;本題難度雖然不大,但關鍵在于(2)(3)題都要把各種情況考慮到,以免漏解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

科目:初中數學 來源:2012年江蘇省宿遷市沭陽國際學校中考數學模擬試卷(一)(解析版) 題型:解答題

如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

科目:初中數學 來源:2010年福建省南平市初中畢業綜合測試(解析版) 題型:解答題

(2010•南平模擬)如圖1所示,已知:在矩形ABCD中,AB=6,點P在AD邊上.
(1)如果∠BPC=90°,求證:△ABP∽△DPC;
(2)在問題(1)中,當AD=13時,求tan∠PBC;
(3)如圖2所示,原題目中的條件不變,且AP=3,DP=9,M是線段BP上一點,過點M作MN∥BC交PC于點N,分別過點M,N作ME⊥BC于點E,NF⊥BC于點F,并且矩形MEFN和矩形ABCD的長與寬之比相等,求MN.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久草免费在线 | 福利一区福利二区 | 久久久久久91 | 男男gay腐片h大尺度 | 欧美综合第一页 | 久久免费国产精品 | 国产精品久久在线观看 | 久久精品二区 | 免费福利电影 | 密室大逃脱第六季大神版在线观看 | 日韩久久久久久久久久久 | 久久久久女教师免费一区 | 亚洲视频综合 | 亚洲电影一区 | 国产中文区二幕区2012 | 精品国产乱码久久久久久1区2区 | 蜜桃av一区 | 日韩在线高清视频 | 久久久成人精品 | 国产免费视频 | 欧美国产一区二区 | 日韩精品三区 | 成人超碰在线观看 | av在线免费看片 | 福利一区二区在线 | 亚州中文字幕蜜桃视频 | 欧美日韩久久 | 人人精品 | 成人av电影免费在线观看 | 天天插天天操 | 黄色片免费 | 久久久精品日本 | 久久久国产精品入口麻豆 | 麻豆久| 日本久久久久久 | 99国内精品久久久久久久 | 久久亚洲成人av | 欧美成人免费在线观看 | 亚洲精品久久久久avwww潮水 | 亚洲精品乱码久久久久久不卡 | 午夜不卡视频 |