日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°)得到△ABC′,如圖所示.
試問:
(1)當α為多少度時,能使得圖②中AB∥DC;
(2)當旋轉至圖③位置,此時α又為多少度圖③中你能找出哪幾對相似三角形,并求其中一對的相似比;
(3)連接BD,當0°<α≤45°時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.

【答案】分析:一副三角板的角度常識和相似三角形的判定定理及性質可求解.
解答:解:(1)如圖②,由題意∠CAC'=α,
要使AB∥DC,須∠BAC=∠ACD,
∴∠BAC=30°.
∴α=∠CAC'=∠BAC'-∠BAC=45°-30°=15°.
即α=15°時,能使得AB∥DC.(4分)


(2)易得α=45°時,可得圖③,
此時,若記DC與AC',BC'分別交于點E,F,
則共有兩對相似三角形:△BFC∽△ADC,△C'FE∽△ADE.(6分)
下求△BFC與△ADC的相似比:
在圖③中,設AB=a,則易得AC=a.
則BC=(-1)a,BC:AC=(-1)a:a=1:(2+
或(2-):2.(8分)
注:△C'FE與△ADE的相似比為:C'F:AD=(-+1):或(+-2):2.

(3)解法一:
當0°<α≤45°時,總有△EFC'存在.
∵∠EFC'=∠BDC+∠DBC',∠CAC'=α,∠FEC'=∠C+α,
∵∠EFC'+∠FEC'+∠C'=180°
∴∠BDC+∠DBC'+∠C+α+∠C'=180°(11分)
又∵∠C'=45°,∠C=30°
∴∠DBC'+∠CAC'+∠BDC=105°(13分)
解法二:
在圖②中,BD分別交AC,AC'于點M,N,
由于在△AMN中,∠CAC'=α,∠AMN+∠CAC'+∠ANM=180°,
∴∠BDC+∠C+α+∠DBC'+∠C'=180°
∴∠BDC+30°+α+∠DBC'+45°=180°
∴∠BDC+α+∠DBC'=105°(11分)
在圖③中,α=∠CAC'=45°
易得∠DBC'+∠BDC=60°
也有∠DBC'+∠CAC'+∠BDC=105°
綜上,當0°<a≤45°時,總有∠DBC'+∠CAC'+∠BDC=105°.(13分)
點評:此題主要考查了相似三角形的判定定理及一副三角板的固定角度.需注意的是利用相似性質的時候找準對應的角、對應邊.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°)得到△ABC′,如圖所示.
試問:
(1)當α為多少度時,能使得圖②中AB∥DC;
(2)當旋轉至圖③位置,此時α又為多少度圖③中你能找出哪幾對相似三角形,并求其中一對的相似比;
(3)連接BD,當0°<α≤45°時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

22、取一副三角板按圖1拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°)得到△ABC′,如圖所示.
試問:(1)當α為多少度時,能使得圖2中AB∥DC;
(2)連接BD,當0°<α≤45°時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數學 來源: 題型:044

(2006安徽,23)(13分)取一副三角板按圖①拼接,固定三角板ADC,將三板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°)得到△,如圖所示.

試問:(1)當α為多少度時,能使得圖②中ABDC

(2)當旋轉到圖③位置,此時α又為多少度?圖③中你能找出哪幾對相似三角形,并求其中一對的相似比;

圖③

(3)連結BD,當0°<α≤45°時,探尋∠值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°得到⊿ABC/,如圖②所示。試問:

1.當α為多少度時,能使得圖②中AB∥CD?

2.當旋轉至圖③位置,此時α又為多少度?圖③中你能找出哪幾對相似三角形,并求其中一對的相似比。

3.連結BD,當0°<α≤45°時,探尋∠DBC/+∠CAC/+∠BDC值的大小變化情況,并給出你的證明。

 

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇蘇州星港學校八年級下5月月考數學試卷(解析版) 題型:解答題

取一副三角板按圖①拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為α的角(0°<α≤45°得到⊿ABC/,如圖②所示。試問:

1.當α為多少度時,能使得圖②中AB∥CD?

2.當旋轉至圖③位置,此時α又為多少度?圖③中你能找出哪幾對相似三角形,并求其中一對的相似比。

3.連結BD,當0°<α≤45°時,探尋∠DBC/+∠CAC/+∠BDC值的大小變化情況,并給出你的證明。

 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品免费国产一区二区三区 | 精品日韩视频 | 综合色婷婷一区二区亚洲欧美国产 | 中文字幕黄色 | 国产精品久久久久久久久久久免费看 | 老司机深夜福利视频 | 国产免费黄网站 | 欧美日韩一区二区三区在线观看 | 精品国产一区二区三区粉芽 | 日本三级在线观看网站 | 久久久久久久久久久免费视频 | 在线久草| 日本久久99 | 久久成人一区 | 一级毛片免费播放 | 亚洲性视频 | 成人av电影免费看 | 91精品国产91久久综合桃花 | 欧美aa在线观看 | 日韩久久久精品 | 国产成a| 欧美午夜一区二区 | 久久首页 | www,久久久 | 国产视频久久久久久久 | 99色综合| 欧美日韩综合精品 | 亚洲 精品 综合 精品 自拍 | 91精品久久| 一区二区三区久久 | 黄色在线免费观看 | 成年人在线观看视频 | 欧美卡一卡二 | 成人羞羞在线观看网站 | 国产精品久久久久毛片软件 | 一级黄色裸体片 | www.日韩在线 | 亚洲高清欧美 | 日韩电影免费在线观看中文字幕 | 国产精品亚洲视频 | 久久伊人精品视频 |