【題目】在平面直角坐標系中,點A(1,1),B(4,3),將點A向左平移2個單位長度,再向上平移3個單位長度得到點C.
(1)寫出點C的坐標;
(2)畫出△ABC并判斷△ABC的形狀.
【答案】(1)C(﹣1,4);(2)△ABC是等腰直角三角形;過程見詳解.
【解析】
(1)根據向左平移2個單位長度為橫坐標減2,向上平移3個單位長度為縱坐標加3,即可得到C點坐標.
(2)如圖,順次連接A,B,C,然后根據每個點的坐標利用兩點間的距離公式分別求出AB,BC,CA的長,再根據勾股定理逆定理判斷即可.
(1)∵將點A(1,1)向左平移2個單位長度,再向上平移3個單位長度得到點C,
∴C(﹣1,4);
(2)△ABC是等腰直角三角形;
如圖所示,根據勾股定理得,AB==
=
,
BC==
=
,
AC==
=
,
∴AB=AC,
∵AB2+AC2=BC2=26,
∴△ABC是直角三角形,
∴△ABC是等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】如圖,某容器由A、B、C三個連通長方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個容器容積的(容器各面的厚度忽略不計),A、B的總高度為12厘米.現以均勻的速度(單位:cm3/min)向容器內注水,直到注滿為止.已知單獨注滿A、B分別需要的時間為10分鐘、8分鐘.
(1)求注滿整個容器所需的總時間;
(2)設容器A的高度為xcm,則容器B的高度為 cm;
(3)求容器A的高度和注水的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,某地有一地下工程,其底面是正方形,面積為405m2,四個角是面積為5m2的小正方形滲水坑,根據這些條件如何求a的值?與你的同伴進行交流.
下面是小康提供的解題方案,根據解題方案請你完成本題的解答過程:
①設大正方形的邊長為x m,小正方形的邊長為y m,那么根據題意可列出關于x的方程為_______,關于y的方程為_______;
②利用平方根的意義,可求得x=________(取正值,結果保留根號),y=________(取正值,結果保留根號);
③所以a=x-2y=____________=__________(結果保留根號);
④答:________________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與x軸相交于點B(1,0)和點C(9,0)兩點,與y軸的負半軸相交于A點,過A、B、C三點的⊙P與y軸相切于點A,M為y軸正半軸上的一個動點,直線MB交⊙P于點D,交拋物線于點N.
(1)求點A坐標和⊙P的半徑;
(2)求拋物線的解析式;
(3)當△MOB與以點B、C、D為頂點的三角形相似時,求△CDN的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了進一步普及足球知識,傳播足球文化,某市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統計圖表:
獲獎等次 | 頻數 | 頻率 |
一等獎 | 10 | 0.05 |
二等獎 | 20 | 0.10 |
三等獎 | 30 | b |
優勝獎 | a | 0.30 |
鼓勵獎 | 80 | 0.40 |
請根據所給信息,解答下列問題:
(1)a= , b=;
(2)補全頻數分布直方圖;
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表該市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數y=kx+b的圖象經過點A(0,9),并且與直線y=x相交于點B,與x軸相交于點C.
(1)若點B的橫坐標為3,求B點的坐標和k,b的值;
(2)在y軸上是否存在這樣的點P,使得以點P,B,A為頂點的三角形是等腰三角形?若存在,請直接寫出點P坐標;若不存在,請說明理由.
(3)在直線y=kx+b上是否存在點Q,使△OBQ的面積等于?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在折紙活動中,小明制作了一張△ABC紙片,點D、E分別是邊AB、AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=75°,則∠1+∠2=( )
A.150°
B.210°
C.105°
D.75°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)一個兩位正整數,a表示十位上的數字,b表示個位上的數字(a≠b,ab≠0),則這個兩位數用多項式表示為 (含a、b的式子);若把十位、個位上的數字互換位置得到一個新兩位數,則這兩個兩位數的和一定能被 整除,這兩個兩位數的差一定能被 整除
(2)一個三位正整數F,各個數位上的數字互不相同且都不為0.若從它的百位、十位、個位上的數字中任意選擇兩個數字組成6個不同的兩位數.若這6個兩位數的和等于這個三位數本身,則稱這樣的三位數F為“友好數”,例如:132是“友好數”
一個三位正整數P,各個數位上的數字互不相同且都不為0,若它的十位數字等于百位數字與個位數字的和,則稱這樣的三位數P為“和平數”
①直接判斷123是不是“友好數”?
②直接寫出共有 個“和平數”
③通過列方程的方法求出既是“和平數”又是“友好數”的數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com