先化簡(jiǎn)后求值:
(1)3(3x2+4-5x3)-2(x3-3+3x2),其中x=-1;
(2)(3a3-a2+a-1)-[4a3+2a2-3(a+2)],其中a=-1.
解:(1)3(3x2+4-5x3)-2(x3-3+3x2)
=9x2+12-15x3-2x3+6-6x2,
=-17x3+3x2+18
當(dāng)x=-1時(shí),
原式=-17x3+3x2+18
=-17×(-1)3+3×(-1)2+18
=17+3+18
=38;
(2)(3a3-a2+a-1)-[4a3+2a2-3(a+2)]
=3a3-a2+a-1-4a3-2a2+3(a+2)
=-a3-3a2+a-1+3a+6
=-a3-3a2+4a+5
當(dāng)a=-1時(shí),
原式=-a3-3a2+4a+5
=-(-1)3-3×(-1)2+4×(-1)+5
=1-3-4+5
=6-7
=-1.
分析:兩題都是先去掉括號(hào)后,再根據(jù)合并同類(lèi)項(xiàng)法則進(jìn)行化簡(jiǎn),最后代入求值.
點(diǎn)評(píng):本題利用去括號(hào)法則、合并同類(lèi)項(xiàng)法則,先把整式運(yùn)算化簡(jiǎn)后再代入求值使運(yùn)算更加簡(jiǎn)便.