【題目】在數軸上,點分別表示數
,且
,動點
從點
出發,以每秒
個單位長度的速度沿數軸向右運動,點
始終為線段
的中點,設點
運動的時間為
秒.則:
在點
運動過程中,用含
的式子表示點
在數軸上所表示的數.
當
時,點
在數軸上對應的數是什么?
設點
始終為線段
的中點,某同學發現,當點
運動到點
右側時,線段
長度始終不變.請你判斷該同學的說法是否正確,并加以證明.
科目:初中數學 來源: 題型:
【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關部門決定降低坡度,使新坡面的坡度為1:.
(1)求新坡面的坡角∠CAB的度數;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 某公園準備修建一塊長方形草坪,長為a米,寬為b米.并在草坪上修建如圖所示的十字路,
已知十字路寬2米.
(1)用含a、b的代數式表示修建的十字路的面積.
(2)若a=30,b=20,求草坪(陰影部分)的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著近幾年我市私家車日越增多,超速行駛成為引發交通事故的主要原因之一.某中學數學活動小組為開展“文明駕駛、關愛家人、關愛他人”的活動,設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點P,在筆直的車道m上確定點O,使PO和m垂直,測得PO的長等于21米,在m上的同側取點A、B,使∠PAO=30°,∠PBO=60°.
(1)求A、B之間的路程(保留根號);
(2)已知本路段對校車限速為12米/秒若測得某校車從A到B用了2秒,這輛校車是否超速?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:點P是平行四邊形ABCD對角線AC所在直線上的一個動點(點P不與點A、C重合),分別過點A、C向直線BP作垂線,垂足分別為點E、F,點O為AC的中點.(1)當點P與點O重合時如圖1,易證OE=OF(不需證明)
(2)直線BP繞點B逆時針方向旋轉,當∠OFE=30°時,如圖2、圖3的位置,猜想線段CF、AE、OE之間有怎樣的數量關系?請寫出你對圖2、圖3的猜想,并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,∠E=∠F=90°,∠B=∠C,AE=AF,結論:①EM=FN;②AF
∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正確的有 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4.分別以AB、AC、BC為邊在AB的同側作正方形ABEF、ACPQ、BDMC,四塊陰影部分的面積分別為S1、S2、S3、S4.則S1+S2+S3+S4等于( )
A.14 B.16 C.18 D.20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一直角三角板的直角頂點
在直線
上,作射線
三角板的各邊和射線
都處于直線
的上方.
(1)將三角板繞點在平面內旋轉,當
平分
時,如圖1,如果
,求
的度數;
(2)如圖2,將三角板繞
點在平面內任意轉動,如果
始終在
內,且
,請問:
和
有怎樣的數量關系?
(3)如圖2,如果平分
,
是否也平分
?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com