【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.請判斷沉船C是否在“蛟龍”號深潛極限范圍內(nèi)?并說明理由;(精確到0.01)(參考數(shù)據(jù):≈1.414,
≈1.732)
【答案】在,理由見解析.
【解析】
試題分析:過點C作CD垂直AB延長線于點D,設(shè)CD為x米,在Rt△ACD和Rt△BCD中,分別表示出AD和BD的長度,然后根據(jù)AB=2000米,求出x的值,求出點C距離海面的距離,判斷是否在極限范圍內(nèi);
試題解析:過點C作CD垂直AB延長線于點D,
設(shè)CD=x米,
在Rt△ACD中,
∵∠DAC=45°,
∴AD=x,
在Rt△BCD中,
∵∠CBD=60°,
∴BD=,
∴AB=AD-BD=x- =2000,
解得:x≈4732,
∴船C距離海平面為4732+1800=6532米<7062.68米,
∴沉船C在“蛟龍”號深潛極限范圍內(nèi);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與
軸交于
兩點,與
軸交于點
,直線l是拋物線的對稱軸,
是拋物線的頂點.
(1)求拋物線的解析式及頂點的坐標(biāo);
(2)如圖,連接,線段
上的點
關(guān)于直線
的對稱點
恰好在線段
上,求點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Q為正方形ABCD外一點,連接BQ,過點D作DQ⊥BQ,垂足為Q,G、K分別為AB、BC上的點,連接AK、DG,分別交BQ于F、E,AK⊥DG,垂足為點H,AF=5,DH=8,F為BQ中點,M為對角線BD的中點,連接HM并延長交正方形于點N,則HN的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線交
軸于點
,
,交
軸的負(fù)半軸于
,頂點為
.下列結(jié)論:①
;②
;③當(dāng)
時,
;④當(dāng)
是等腰直角三角形時,則
;⑤若
,
是一元二次方程
的兩個根,且
,則
.其中錯誤的有( )個.
A.5B.4C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某商品的進(jìn)價為每件40元.現(xiàn)在的售價是每件60元.每星期可賣出300件.市場調(diào)查反映:如調(diào)整價格,每漲價一元.每星期要少賣出10件;每降價一元,每星期可多賣出18件.如何定價才能使利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,是一張放在平面直角坐標(biāo)系中的紙片,點
與原點
重合,點
在
軸的正半軸上,點
在
軸的正半軸上.已知
,
.將紙片的直角部分翻折,使點
落在
邊上,記為點
,
為折痕,點
在
軸上.
(1)在如圖所示的直角坐標(biāo)系中,點的坐標(biāo)為,________,
________;
(2)線段上有一動點
(不與點
,
重合)自點
沿
方向以每秒
個單位長度向點
做勻速運動,設(shè)運動時間為
,過點
作
交
于點
,過點
作
交
于點
,求四邊形
的面積
與時間
之間的函數(shù)表達(dá)式.當(dāng)
取何值時,
有最大值?最大值是多少?
(3)當(dāng)為何值時,
,
,
三點構(gòu)成一個等腰三角形?并求出點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與
軸交于點
.
(1)求該拋物線的表達(dá)式;
(2)點是線段
上方的拋物線上一個動點,求
的面積的最大值;
(3)點是拋物線的對稱軸上一個動點,當(dāng)以
為頂點的三角形是直角三角形時,求出點
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點 A,交 y 軸于點 B,二次函數(shù) y=
x2 bx c的圖像經(jīng)過 A、B 兩點,與 x 軸交于另一點 C.
(1)求二次函數(shù)的關(guān)系式及點 C 的坐標(biāo);
(2)如圖②,若點 P 是直線 AB 上方的拋物線上一點,過點 P 作 PD∥x 軸交 AB 于點 D,PE∥y 軸交 AB 于點 E,求 PD+PE 的最大值;
(3)如圖③,若點 M 在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點 M的坐標(biāo).
① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)在“精準(zhǔn)扶貧”活動中銷售農(nóng)產(chǎn)品,經(jīng)分析發(fā)現(xiàn)月銷售量(萬件與月份
(月)的關(guān)系為:
每件產(chǎn)品的利潤 (元)與月份
(月)的關(guān)系如下表:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 10 | 10 |
請你根據(jù)表格直接寫出每件產(chǎn)品利潤z (元) 與月份
(月)的函數(shù)關(guān)系式;
若月利潤
(萬元) =當(dāng)月銷售量
(萬件)
當(dāng)月每件產(chǎn)品的利潤
(元),求月利潤
(萬元)與月份
(月)的關(guān)系式;
當(dāng)
為何值時,月利潤
有最大值,最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com