【題目】如圖1,在Rt△ABC中,∠ABC=90°,AB=BC,將△ABC繞點A逆時針旋轉,得到△ADE,旋轉角為α(0°<α<90°),連接BD交CE于點F.
(1)如圖2,當α=45°時,求證:CF=EF;
(2)在旋轉過程中,①問(1)中的結論是否仍然成立?證明你的結論;②連接CD,當△CDF為等腰直角三角形時,求tan的值.
【答案】(1)見解析;(2) ① 成立,理由見解析;②
【解析】
(1)如圖中,由∠EAC=∠DAB,AE=AC,AD=AB,可得∠AEC=∠ACE=∠ADB=∠ABD,繼而可得FD=FC,再根據∠EDC=90°,繼而可推導得出∠FED=∠FDE,可得FE=FD,即可求得EF=FC;
(2)①如圖1中,結論仍然成立.理由:連接AF,由旋轉的性質可推導得出∠FCA=∠ABF,從而可得A,B,C,F四點共圓,繼而根據圓內接四邊形的性質可求得∠AFC=90°,有AF⊥EC,再根據AE=AC,即可求得EF=CF;
②分CF=CD,∠FCD=90°和DF=DC,∠CDF=90°兩種情況分別進行討論即可得.
(1)如圖中,
∵∠EAC=∠DAB,AE=AC,AD=AB,
∴∠AEC=∠ACE=∠ADB=∠ABD,
∵∠ADB=∠CDF,
∴∠FDC=∠FCD,
∴FD=FC,
∵∠EDC=90°,
∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,
∴∠FED=∠FDE,
∴FE=FD,
∴EF=FC.
(2)①如圖1中,結論仍然成立.
理由:連接AF.
∵AB=AD,AE=AC,
∴∠ABD=∠ADB,∠ACE=∠EAC,
又∵∠BAD=∠CAE,∠ABD+∠ADB+∠BAD=180°,∠ACE+∠EAC+∠CAE=180°,
∴∠FCA=∠ABF,
∴A,B,C,F四點共圓,
∴∠AFC+∠ABC=180°,
∵∠ABC=90°,
∴∠AFC=90°,
∴AF⊥EC,
∵AE=AC,
∴EF=CF.
②如圖3﹣1中,當CF=CD,∠FCD=90°時,連接AF,作CH⊥BF于H.設CF=CD=a.
則DE=,DF=
a,
∵CF=CD,CH⊥DF,
∴HF=HD,
∴CH=DF=
a,
∴BC=DE=a,
∴BH=,
∵AE=AC,EF=CF,
∴AF平分∠EAC,
∵A,B,C,F四點共圓,
∴∠CAF=∠CBH=α,
∴tanα=
=
;
如圖3﹣2中,當DF=DC,∠CDF=90°時,作DH⊥CF于H,連接AF.設CD=DF=m.
則CF=EF=a,DH=
CF=
m,
∴DE=BC=m,
∴BD==2m,
∴tanα=
=
.
科目:初中數學 來源: 題型:
【題目】經過舉國上下抗擊新型冠狀病毒的斗爭,疫情得到了有效控制,國內各大企業在2月9日后紛紛進入復工狀態.為了了解全國企業整體的復工情況,我們查找了截止到2020年3月1日全國部分省份的復工率,并對數據進行整理、描述和分析.下面給出了一些信息:
a.截止3月1日20時,全國已有11個省份工業企業復工率在90%以上,主要位于東南沿海地區,位居前三的分別是貴州(100%)、浙江(99.8%)、江蘇(99%).
b.各省份復工率數據的頻數分布直方圖如圖1(數據分成6組,分別是40<x≤50;
50<x≤60;60<x≤70;70<x≤80;80<x≤90;90<x≤100):
c.如圖2,在b的基礎上,畫出扇形統計圖:
d.截止到2020年3月1日各省份的復工率在80<x≤90這一組的數據是:
81.3 | 83.9 | 84 | 87.6 | 89.4 | 90 | 90 |
e.截止到2020年3月1日各省份的復工率的平均數、中位數、眾數如下:
日期 | 平均數 | 中位數 | 眾數 |
截止到2020年3月1日 | 80.79 | m | 50,90 |
請解答以下問題:
(1)依據題意,補全頻數分布直方圖;
(2)扇形統計圖中50<x≤60這組的圓心角度數是 度(精確到0.1).
(3)中位數m的值是 .
(4)根據以上統計圖表簡述國內企業截止3月1日的復工率分布特征.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D是BC邊上異于點B,C的一動點,將三角形ABD沿AB翻折得到△ABD1,將△ACD沿AC翻折得到△ACD2,連接D1D2,則四邊形D1BCD2的面積的最大值是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點C、D在線段AB上,若點C是線段AD的中點,2BD>AD,則下列結論正確的是( ).
A. CD<AD- BD B. AB>2BD C. BD>AD D. BC>AD
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】題目:某校七年級學生乘車去參加社會實踐活動,若每輛客車乘50人,還有12人不能上車;若每輛客車乘55人,則最后一輛空了8個座位,求該校租這種客車的輛數:
根據題意,小明、小紅分別列出了尚不完整的方程如下:
小明列出不完整的方程為
小紅列出不完整的方程為
(說明:其中“”表示運算符號,“
”表示數字):
(1)小明所列方程中表示的意義是________________________;
小紅所列方程中表示的意義是___________________________;
(2)選擇兩位同學的其中一位學生的做法,將其補充完整,并完整地解答這道題.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】疫情無情人有情,愛心捐款傳真情.新冠肺炎疫情發生后,某班學生積極參加獻愛心活動,該班名學生的捐款統計情況如下表,關于捐款金額,下列說法錯誤的是( )
金額/元 | 10 | 20 | 30 | 50 | 100 |
人數 | 2 | 18 | 10 | 8 | 2 |
A.平均數為元B.眾數為
元C.中位數為
元D.極差為
元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y1=ax2+bx+c(a≠0)的頂點坐標A(﹣1,3),與x軸的一個交點B(﹣4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a﹣b=0;②abc<0;③拋物線與x軸的另一個交點坐標是(3,0);④方程ax2+bx+c﹣3=0有兩個相等的實數根;⑤當﹣4<x<﹣1時,則y2<y1.
其中正確的是( )
A. ①②③ B. ①③⑤ C. ①④⑤ D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:當點P在射線OA上時,把的的值叫做點P在射線OA上的射影值;當點P不在射線OA上時,把射線OA上與點P最近點的射影值,叫做點P在射線OA上的射影值.
例如:如圖1,△OAB三個頂點均在格點上,BP是OA邊上的高,則點P和點B在射線OA上的射影值均為=
.
(1)在△OAB中,
①點B在射線OA上的射影值小于1時,則△OAB是銳角三角形;
②點B在射線OA上的射影值等于1時,則△OAB是直角三角形;
③點B在射線OA上的射影值大于1時,則△OAB是鈍角三角形.
其中真命題有 .
A.①②B.①③C.②③D.①②③
(2)已知:點C是射線OA上一點,CA=OA=1,以〇為圓心,OA為半徑畫圓,點B是⊙O上任意點.
①如圖2,若點B在射線OA上的射影值為.求證:直線BC是⊙O的切線;
②如圖3,已知D為線段BC的中點,設點D在射線OA上的射影值為x,點D在射線OB上的射影值為y,直接寫出y與x之間的函數關系式為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com