【題目】如圖,在中,
和
的平分線相交于點
,過
作
,交
于點
,交
于點
.若
,則線段
的長為______.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣bx+2(﹣2≤b≤2),當b從﹣2逐漸增加到2的過程中,它所對應的拋物線的位置也隨之變動,下列關于拋物線的移動方向的描述中,正確的是( )
A. 先往左上方移動,再往左下方移動
B. 先往左下方移動,再往左上方移動
C. 先往右上方移動,再往右下方移動
D. 先往右下方移動,再往右上方移動
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c(a≠0)圖象如圖所示,下列結論:
①abc<0;②2a﹣b<0;③a﹣b+c>0;④點(﹣3,y1),(1,y2)都在拋物線上,則有y1>y2.其中正確的結論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=﹣x2+x+2
與x軸交于A,B兩點,交y軸于點C,點C關于拋物線對稱軸對稱的點為D.
(1)求點D的坐標及直線AD的解析式;
(2)如圖1,連接CD、AD、BD,點M為線段CD上一動點,過M作MN∥BD交線段AD于N點,點P是y軸上的動點,當△CMN的面積最大時,求△MPN的周長取得最小值時點P的坐標;
(3)如圖2,線段AE在第一象限內交BD于點E,其中tan∠EAB=,將拋物線向右水平移動,點A平移后的對應點為點G;將△ABD繞點B逆時針旋轉,旋轉后的三角形紀為△A1BD1,若射線BD1與線段AE的交點為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個三角形,是否存在點G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請直接寫出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,,
是直線
與坐標軸的交點,直線
過點
,與
軸交于點
.
(1)求,
,
三點的坐標.
(2)當點是
的中點時,在
軸上找一點
,使
的和最小,畫出點
的位置,并求
點的坐標.
(3)若點是折線
上一動點,是否存在點
,使
為直角三角形,若存在,直接寫出
點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結論就是著名的勾股定理.請利用這個結論,完成下面活動:
一個直角三角形的兩條直角邊分別為
,那么這個直角三角形斜邊長為____;
如圖①,
于
,求
的長度;
如圖②,點
在數軸上表示的數是____請用類似的方法在圖2數軸上畫出表示數
的
點(保留痕跡).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個相似多邊形的面積比為
,則周長的比為
.”中,正確的個數有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,cosB=,點M是AB邊的中點,將△ABC繞著點M旋轉,使點C與點A重合,點A與點D重合,點B與點E重合,得到△DEA,且AE交CB于點P,那么線段CP的長是__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,以□ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.
(1)猜想BG與EG的數量關系.并說明理由;
(2)延長DE,BA交于點H,其他條件不變,
①如圖2,若∠ADC=60°,求的值;
②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com