科目:初中數學 來源: 題型:
問題提出
平面內不在同一條直線上的三點確定一個圓.那么平面內的四點(任意三點均不在同一
直線上),能否在同一個圓呢?
初步思考
設不在同一條直線上的三點A、B、C確定的圓為⊙O.
⑴當C、D在線段AB的同側時,
如圖①,若點D在⊙O上,此時有∠ACB=∠ADB,理由是 ;
如圖②,若點D在⊙O內,此時有∠ACB ∠ADB;
如圖③,若點D在⊙O外,此時有∠ACB ∠ADB.(填“=”、“>”或“<”);
由上面的探究,請直接寫出A、B、C、D四點在同一個圓上的條件: .
類比學習
(2)仿照上面的探究思路,請探究:當C、D在線段AB的異側時的情形.
![]() |
此時有 , 此時有 , 此時有 .
由上面的探究,請用文字語言直接寫出A、B、C、D四點在同一個圓上的條件: .
拓展延伸
(3)如何過圓上一點,僅用沒有刻度的直尺,作出已知直徑的垂線?
已知:如圖,AB是⊙O的直徑,點C在⊙O上.
求作:CN⊥AB.
作法:①連接CA,CB;
②在上任取異于B、C的一點D,連接DA,DB;
③DA與CB相交于E點,延長AC、BD,交于F點;
④連接F、E并延長,交直徑AB于M;
⑤連接D、M并延長,交⊙O于N.連接CN.
則CN⊥AB.
請按上述作法在圖④中作圖,并說明CN⊥AB的理由.(提示:可以利用(2)中的結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
投擲一枚質地均勻的正方體骰子.
(1)下列說法中正確的有 .(填序號)
①向上一面點數為1點和3點的可能性一樣大;
②投擲6次,向上一面點數為1點的一定會出現1次;
③連續投擲2次,向上一面的點數之和不可能等于13.
(2)如果小明連續投擲了10次,其中有3次出現向上一面點數為6點,這時小明說:投擲正方體骰子,向上一面點數為6點的概率是.你同意他的說法嗎?說說你的理由.
(3)為了估計投擲正方體骰子出現6點朝上的
概率,小亮采用轉盤來代替骰子做實驗.下圖是一個可以自由轉動的轉盤,請你將轉盤分為2個扇形區域,分別涂上紅、白兩種顏色,使得轉動轉盤,當轉盤停止轉動后,指針落在紅色區域的概率與投擲正方體骰子出現6點朝上的概率相同.
|
查看答案和解析>>
科目:初中數學 來源: 題型:
下列命題正確的是( )
A、垂直于半徑的直線一定是圓的切線
B、正三角形繞其中心旋轉180°后能與原圖形重合是必然事件
C、有一組對邊平行,一組對角相等的四邊形是平行四邊形
D、四個角都是直角的四邊形是正方形
查看答案和解析>>
科目:初中數學 來源: 題型:
書籍是人類進步的階梯.聯合國教科文組織把每年的4月23日確定為“世界讀書日”.某校為了了解該校學生一個學期閱讀課外書籍的情況,在全校范圍內隨機對100名學生進行了問卷調查,根據調查的結果,繪制了統計圖表的一部分:
請你根據以上信息解答下列問題:
(1)補全圖1、圖2;
(2)這100名學生一個學期平均每人閱讀課外書籍多少本?若該校共有4000名學生,請你估計這個學校學生一個學期閱讀課外書籍共多少本?
(3)根據統計表,求一個學期平均一天閱讀課外書籍所用時間的眾數和中位數.
查看答案和解析>>
科目:初中數學 來源: 題型:
等腰三角形的一個內角為50°,則另外兩個角的度數分別為( )
A. 65°,65° B. 50°,80°
C.65°,65°或50°,80° D. 50°,50°
查看答案和解析>>
科目:初中數學 來源: 題型:
一個一次函數圖象與直線y=x+
平行,與x軸、y軸的交點分別為A、B,并且過點(-1,-20),則在線段AB上(包括端點A、B),橫、縱坐標都是整數的點有 個.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com