【題目】如圖,BE,CD相交于點A,∠DEA、∠BCA的平分線相交于F.
(1)探求:∠F與∠B、∠D有何等量關系?
(2)當∠B︰∠D︰∠F=2︰4︰x時,x為多少?
【答案】【答案:(1)∠F=(∠B+∠D);(2)3.
【解析】試題分析:(1)由三角形內角和外角的關系可知∠D+∠1=∠3+∠F,∠2+∠F=∠B+∠4,由角平分線的性質可知∠1=∠2,∠3=∠4,故∠F=(∠B+∠D).
(2)設∠B=2α,則∠D=4α.利用(1)中的結論和已知條件來求x的值.
試題解析:解:(1)∠F=(∠B+∠D);
理由如下:
∵∠DHF是△DEH的外角,∠EHC是△FCH的外角,∠DHF=∠EHC,∴∠D+∠1=∠3+∠F ①
同理,∠2+∠F=∠B+∠4 ②
又∵∠DEA,∠BCA的平分線相交于F,∴∠1=∠2,∠3=∠4;
∴①﹣②得:∠B+∠D=2∠F,即∠F=(∠B+∠D).
(2)∵∠B:∠D:∠F=2:4:x,∴設∠B=2α,則∠D=4α,∴∠F=(∠B+∠D)=3α,又∠B:∠D:∠F=2:4:x,∴x=3.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,CD⊥AD,垂足為點D,有下列說法:
①點A與點B的距離是線段AB的長;
②點A到直線CD的距離是線段AD的長;
③線段CD是△ABC邊AB上的高;
④線段CD是△BCD邊BD上的高.
上述說法中,正確的個數為_________個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將三張質地相同并分別標有數字1、2、3的卡片,背面朝上放在桌面上,洗勻后,甲同學從中隨機抽取一張卡片.
(1)甲同學抽到卡片上的數恰好是方程x2﹣4x+3=0的根的概率為 ;
(2)甲乙兩人約定:甲先隨機抽取一張卡片后,背面朝上放回桌面洗勻,然后乙再隨機抽取一張卡片,若兩人所抽取卡片上的數字恰好是方程x2﹣4x+3=0的兩個根,則甲獲勝;否則乙獲勝.請你通過列表或畫樹狀圖的方法,說明這個游戲是否公平?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小睿每天起床后必須要做的事情有穿衣(2分鐘)、整理床(2分鐘)、洗臉梳頭(4分鐘)、上廁所(5分鐘)、燒飯(15分鐘)、吃早飯(10分鐘),完成這些工作共需38分鐘,你認為最合理的安排應是 分鐘.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算
(1)﹣40﹣28﹣(﹣19)+(﹣24)
(2)﹣82+3×(﹣2)2+6÷(﹣ )2
(3)﹣24×(﹣ +
﹣
)
(4)﹣12016﹣(1﹣0.5)× ×[3﹣(﹣3)2]
(5)x+7x﹣5x
(6)﹣4x2y+3xy2﹣9x2y﹣5xy2
(7)4(2x2﹣y2)﹣5(3y2﹣x2)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com