日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】如圖,RtCEF中,∠C=90°,∠CEF, CFE外角平分線交于點A,過點A分別作直線CECF的垂線,BD為垂足.

(1)求證:四邊形ABCD是正方形,

(2)已知AB的長為6,求(BE+6)(DF+6)的值,

(3)借助于上面問題的解題思路,解決下列問題:若三角形PQR中,∠QPR=45°,一條高是PH,長度為6,QH=2,則HR= .

【答案】1)見解析;(272;(33.

【解析】

1)根據(jù)三個角是直角的四邊形先證得四邊形ABCD是矩形,再過點AAGEF于點G,根據(jù)角平分線的性質(zhì)得出AB=AG= AD,問題即得解決;

2)如圖1,通過兩次運用HL可證得EF=BE+DF,再設(shè)BE=xDF=y,在RtCEF中,根據(jù)勾股定理得出關(guān)于xy的等式,再整體代入展開整理后的式子即可得到答案;

3)如圖3,作PRH關(guān)于PR對稱的△PRN,作PQH關(guān)于PQ對稱的△PQMNRMQ的延長線交于點K,先根據(jù)鄰邊相等的矩形是正方形證明四邊形PNKM是正方形,再根據(jù)(2)的結(jié)論即可求出結(jié)果.

解:(1)證明:∵ADCDABCB,∠C=90°

∴四邊形ABCD是矩形,

如圖1,過點AAGEF于點G

AF平分∠DFEADCD

AG=AD

同理可得:AG=AB

AB=AD.

∴矩形ABCD是正方形.

2)在RtADFRtAGF中,

RtADFRtAGFHL.

DF=GF

同理可得BE=GE.

EF=GE+GF=BE+DF.

設(shè)BE=EG=xDF=FG=y,則CE=6xCF=6y,如圖2

RtCEF中,根據(jù)勾股定理得:,即,整理得:.

.

3)如圖3,作PRH關(guān)于PR對稱的△PRN,作PQH關(guān)于PQ對稱的△PQMNRMQ的延長線交于點K,則PN=PH=6PM=PH=6,∠2=1,∠4=3,∠N=PHR=90°,∠M=PHQ=90°,MQ=HQ=2NR=HR

PN=PM=6

∵∠1+3=45°

∴∠1+2+3+4=90°,即∠NPM=90°

∴四邊形PNKM是正方形.

∵RQ=RH+HQ=NR+QM

由(2)題的結(jié)論知:

,解得,即HR=3.

故答案為3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1△ABC中,∠ACB=90°AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點DBE⊥MN于點E

1)求證:①△ADC≌△CEB②DE=AD+BE

2)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,DEADBE又怎樣的關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點DEHG分別在ABC的邊上DEBC,∠3=BDGEH交于點F.求證:∠1+2=180°

證明:(請將下面的證明過程補充完整)

DEBC(已知)

∴∠3=EHC______

∵∠3=B(已知)

∴∠B=EHC______

ABEH______

∴∠2+______=180°______

∵∠1=4______

∴∠1+2=180°(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,CBG=A,CD為直徑,OCAB相交于點E,過點EEFBC,垂足為F,延長CDGB的延長線于點P,連接BD.

(1)求證:PG與⊙O相切;

(2)若=,求的值;

(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結(jié)論時,需添加輔助線,則作法不正確的是(  )

A. 作∠APB的平分線PCAB于點C

B. 過點PPCAB于點CAC=BC

C. AB中點C,連接PC

D. 過點PPCAB,垂足為C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=F=90°,∠B=CAE=AF,下列結(jié)論不正確的結(jié)論是(

A.CD=DNB.1=2C.BE=CFD.ACN≌△ABM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個圖形中有全等三角形的對數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,厘米,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時點在線段上由點向點運動.當一個點停止運動時,另一個點也隨之停止運動.

(1)用含有的代數(shù)式表示,則_______厘米;

(2)若點的運動速度與點的運動速度相等,經(jīng)過秒后,是否全等,請說明理由;

(3)若點的運動速度與點的運動速度不相等,那么當點的運動速度為多少時,能夠使全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標系中,點O為坐標原點,點Ax軸的負半軸上,直線y=﹣x+x軸、y軸分別交于B、C兩點,四邊形ABCD為菱形.

(1)如圖1,求點A的坐標;

(2)如圖2,連接AC,點PACD內(nèi)一點,連接AP、BP,BPAC交于點G,且∠APB=60°,點E在線段AP上,點F在線段BP上,且BF=AE,連接AF、EF,若∠AFE=30°,求AF2+EF2的值;

(3)如圖3,在(2)的條件下,當PE=AE時,求點P的坐標.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕久久精品 | 国产一区二区不卡视频 | 一区二区影院 | 国产精品亚洲精品日韩已方 | 亚洲一区二区 | 青青草97 | 欧美一级特黄aaaaaaa色戒 | 和尚风流一级艳片 | 精品国产乱码久久久久久蜜柚 | 美女爽到呻吟久久久久 | 国产日本欧美视频 | 污网站免费在线观看 | 久久久久网站 | 国产精品毛片一区二区在线看 | 国产激情在线观看视频 | 国产一级黄色大片 | 亚洲www啪成人一区二区 | 97品白浆高清久久久久久 | 亚洲 中文 欧美 日韩 在线观看 | 日本a在线 | 91精品久久久久久久久入口 | 国产极品视频在线观看 | 亚洲高清视频一区 | 欧美一区二区三区精品 | 在线视频 亚洲 | 国产精品久久久一区 | 亚洲成人基地 | 精品欧美一区二区三区久久久 | 精品视频久久 | 蜜桃免费视频 | 欧美一级在线观看 | 色欧美片视频在线观看 | 久久久综合视频 | 午夜羞羞 | 久久精品一区二区 | 亚洲一区在线播放 | 精品中文在线 | 91福利电影在线观看 | 91在线一区 | 欧美激情一区二区三区蜜桃视频 | 蜜桃一本色道久久综合亚洲精品冫 |