【題目】如圖1,將一副三角板的直角重合放置,其中∠A=30°,∠CDE=45°.
(1)如圖1,求∠EFB的度數;
(2)若三角板ACB的位置保持不動,將三角板CDE繞其直角頂點C順時針方向旋轉.
①當旋轉至如圖2所示位置時,恰好CD∥AB,則∠ECB的度數為 ;
②若將三角板CDE繼續繞點C旋轉,直至回到圖1位置.在這一過程中,是否還會存在△CDE其中一邊與AB平行?如果存在,請你畫出示意圖,并直接寫出相應的∠ECB的大小;如果不存在,請說明理由.
【答案】(1)∠EFB=15°;(2)①30°;②存在,圖見解析,∠ECB=120°、165°、150°、60°或15°.
【解析】
(1)根據直角三角形內角和的性質即可得到答案;
(2)①根據平行線的性質即可得到答案;
②分5種情況討論,根據平行線的性質進行計算,即可得到答案.
解:(1)∵∠A=30°,∠CDE=45°,
∴∠ABC=90°﹣30°=60°,∠E=90°﹣45°=45°,
∴∠EFB=∠ABC﹣∠E=60°﹣45°=15°;
(2)①∵CD∥AB,
∴∠ACD=∠A=30°,
∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,
∴∠ECB=∠ACD=30°;
②如圖1,CE∥AB,∠ACE=∠A=30°,
∠ECB=∠ACB+∠ACE=90°+30°=120°;
如圖2,DE∥AB時,延長CD交AB于F,
則∠BFC=∠D=45°,
在△BCF中,∠BCF=180°﹣∠B﹣∠BFC,
=180°﹣60°﹣45°=75°,
∴∠ECB=∠BCF+∠ECF=75°+90°=165°;
如圖3,CD∥AB時,∠BCD=∠B=60°,
∠ECB=∠BCD+∠EDC=60°+90°=150°;
如圖4,CE∥AB時,∠ECB=∠B=60°,
如圖5,DE∥AB時,∠ECB=60°﹣45°=15°.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,AC=20,點D與點A關于y軸對稱,點E、F分別是線段AD、AC上的動點(點E不與點A、D重合),且∠CEF=∠ACB.
(1)直接寫出BC的長是 ,點D的坐標是 ;
(2)證明:△AEF與△DCE相似;
(3)當△EFC為等腰三角形時,求點E的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩人在玩轉盤游戲時,準備了兩個可以自由轉動的轉盤A,B,每個轉盤被分成面積相等的幾個扇形,并在每一個扇形內標上數字.游戲規則:同時轉動兩個轉盤,當轉盤停止后,指針所指區域的數字之和為0時,甲獲勝;數字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉一次,直到指針指向某一區域為止.
(1)用畫樹狀圖或列表法求乙獲勝的概率;
(2)這個游戲規則對甲、乙雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.
(1)求∠CDE的度數;
(2)求證:DF是⊙O的切線;
(3)若AC=2DE,求tan∠ABD的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF.
(1)求證:四邊形AECF是矩形;
(2)若AB=6,求菱形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標為(3,4)一次函數
的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.
(1)求b的值;
(2)連結OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標;
(3)設點N是軸上方平面內的一點,以O、D、M、N為頂點的四邊形是菱形,求點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一節數學課上,老師布置了一個任務:
已知,如圖1,在中,
,用尺規作圖作矩形
.
同學們開動腦筋,想出了很多辦法,其中小亮作了圖2,他向同學們分享了作法:
①分別以點、
為圓心,大于
長為半徑畫弧,兩弧分別交于點
、
,連接
交
于點
;
②作射線,在
上取點
,使
;
③連接,
.
則四邊形就是所求作的矩形.
老師說:“小亮的作法正確.”
寫出小亮的作圖依據.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現有如下信息:
請結合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經市場調查發現,甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com