【題目】觀察一列數:1,2,4,8,16,…我們發現,這一列數從第二項起,每一項與它前一項的比都等于2.一般地,如果一列數從第二項起,每一項與它前一項的比都等于同一個常數,這一列數就叫做等比數列,這個常數就叫做等比數列的公比.
(1)等比數列3,-12,48,…的第4項是______;
(2)如果一列數a1,a2,a3,a4,…是等比數列,且公比為q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3,則a5=_______,an=______(用a1與q的式子表示);
(3)一個等比數列的第2項是9,第4項是36,求它的公比.
科目:初中數學 來源: 題型:
【題目】某園林專業戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,種植花卉的利潤y2與投資量x的平方成正比例關系,并得到了表格中的數據.
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關于投資量x的函數關系式;
(2)如果這位專業戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關于m的函數關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為發展校園足球運動,某縣城區四校決定聯合購買一批足球運動裝備,市場調查發現:甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經洽談,甲商場優惠方案是:每購買十套隊服,送一個足球;乙商場優惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區四校聯合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“漢十”高速鐵路襄陽段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明對我校七年級(1)班喜歡什么球類運動的調查,下列圖形中的左圖是小明對所調查結果的條形統計圖.
(1)問七年級(1)班共有多少學生?
(2)請你改用扇形統計圖來表示我校七年級(1)班同學喜歡的球類運動.
(3)從統計圖中你可以獲得哪些信息?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,在等邊三角形ABC中.D是AB邊上的動點,以CD為一邊,向上作等邊三角形EDC.連接AE.
(l)求證:△DBC≌△EAC
(2)試說明AE∥BC的理由.
(3)如圖②,當圖①中動點D運動到邊BA的延長線上時,所作仍為等邊三角形,猜想是否仍有AE∥BC?若成立請證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知,A、O、B在同一條直線上,∠AOE=∠COD,∠EOD=30°.
(1)若∠AOE=88°30′,求∠BOC的度數;
(2)若射線OC平分∠EOB,求∠BOC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①②,的兩邊分別平行.
(1)在圖①中,與
有什么數量關系?為什么?
(2)在圖②中,與
有什么數量關系?為什么?
(3)由(1)(2)你能得出什么結論?用一句話概括你得到的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com